Notes/src/services/llm/pipeline/chat_pipeline.ts
2025-04-11 22:52:09 +00:00

741 lines
37 KiB
TypeScript

import type { ChatPipelineInput, ChatPipelineConfig, PipelineMetrics, StreamCallback } from './interfaces.js';
import type { ChatResponse, StreamChunk, Message } from '../ai_interface.js';
import { ContextExtractionStage } from './stages/context_extraction_stage.js';
import { SemanticContextExtractionStage } from './stages/semantic_context_extraction_stage.js';
import { AgentToolsContextStage } from './stages/agent_tools_context_stage.js';
import { MessagePreparationStage } from './stages/message_preparation_stage.js';
import { ModelSelectionStage } from './stages/model_selection_stage.js';
import { LLMCompletionStage } from './stages/llm_completion_stage.js';
import { ResponseProcessingStage } from './stages/response_processing_stage.js';
import { ToolCallingStage } from './stages/tool_calling_stage.js';
import { VectorSearchStage } from './stages/vector_search_stage.js';
import toolRegistry from '../tools/tool_registry.js';
import toolInitializer from '../tools/tool_initializer.js';
import log from '../../log.js';
import type { LLMServiceInterface } from '../interfaces/agent_tool_interfaces.js';
/**
* Pipeline for managing the entire chat flow
* Implements a modular, composable architecture where each stage is a separate component
*/
export class ChatPipeline {
stages: {
contextExtraction: ContextExtractionStage;
semanticContextExtraction: SemanticContextExtractionStage;
agentToolsContext: AgentToolsContextStage;
messagePreparation: MessagePreparationStage;
modelSelection: ModelSelectionStage;
llmCompletion: LLMCompletionStage;
responseProcessing: ResponseProcessingStage;
toolCalling: ToolCallingStage;
vectorSearch: VectorSearchStage;
};
config: ChatPipelineConfig;
metrics: PipelineMetrics;
/**
* Create a new chat pipeline
* @param config Optional pipeline configuration
*/
constructor(config?: Partial<ChatPipelineConfig>) {
// Initialize all pipeline stages
this.stages = {
contextExtraction: new ContextExtractionStage(),
semanticContextExtraction: new SemanticContextExtractionStage(),
agentToolsContext: new AgentToolsContextStage(),
messagePreparation: new MessagePreparationStage(),
modelSelection: new ModelSelectionStage(),
llmCompletion: new LLMCompletionStage(),
responseProcessing: new ResponseProcessingStage(),
toolCalling: new ToolCallingStage(),
vectorSearch: new VectorSearchStage()
};
// Set default configuration values
this.config = {
enableStreaming: true,
enableMetrics: true,
maxToolCallIterations: 5,
...config
};
// Initialize metrics
this.metrics = {
totalExecutions: 0,
averageExecutionTime: 0,
stageMetrics: {}
};
// Initialize stage metrics
Object.keys(this.stages).forEach(stageName => {
this.metrics.stageMetrics[stageName] = {
totalExecutions: 0,
averageExecutionTime: 0
};
});
}
/**
* Execute the chat pipeline
* This is the main entry point that orchestrates all pipeline stages
*/
async execute(input: ChatPipelineInput): Promise<ChatResponse> {
log.info(`========== STARTING CHAT PIPELINE ==========`);
log.info(`Executing chat pipeline with ${input.messages.length} messages`);
const startTime = Date.now();
this.metrics.totalExecutions++;
// Initialize streaming handler if requested
let streamCallback = input.streamCallback;
let accumulatedText = '';
try {
// Extract content length for model selection
let contentLength = 0;
for (const message of input.messages) {
contentLength += message.content.length;
}
// Initialize tools if needed
try {
const toolCount = toolRegistry.getAllTools().length;
// If there are no tools registered, initialize them
if (toolCount === 0) {
log.info('No tools found in registry, initializing tools...');
// Tools are already initialized in the AIServiceManager constructor
// No need to initialize them again
log.info(`Tools initialized, now have ${toolRegistry.getAllTools().length} tools`);
} else {
log.info(`Found ${toolCount} tools already registered`);
}
} catch (error: any) {
log.error(`Error checking/initializing tools: ${error.message || String(error)}`);
}
// First, select the appropriate model based on query complexity and content length
const modelSelectionStartTime = Date.now();
log.info(`========== MODEL SELECTION ==========`);
const modelSelection = await this.stages.modelSelection.execute({
options: input.options,
query: input.query,
contentLength
});
this.updateStageMetrics('modelSelection', modelSelectionStartTime);
log.info(`Selected model: ${modelSelection.options.model || 'default'}, enableTools: ${modelSelection.options.enableTools}`);
// Determine if we should use tools or semantic context
const useTools = modelSelection.options.enableTools === true;
const useEnhancedContext = input.options?.useAdvancedContext === true;
// Log details about the advanced context parameter
log.info(`Enhanced context option check: input.options=${JSON.stringify(input.options || {})}`);
log.info(`Enhanced context decision: useEnhancedContext=${useEnhancedContext}, hasQuery=${!!input.query}`);
// Early return if we don't have a query or enhanced context is disabled
if (!input.query || !useEnhancedContext) {
log.info(`========== SIMPLE QUERY MODE ==========`);
log.info('Enhanced context disabled or no query provided, skipping context enrichment');
// Prepare messages without additional context
const messagePreparationStartTime = Date.now();
const preparedMessages = await this.stages.messagePreparation.execute({
messages: input.messages,
systemPrompt: input.options?.systemPrompt,
options: modelSelection.options
});
this.updateStageMetrics('messagePreparation', messagePreparationStartTime);
// Generate completion using the LLM
const llmStartTime = Date.now();
const completion = await this.stages.llmCompletion.execute({
messages: preparedMessages.messages,
options: modelSelection.options
});
this.updateStageMetrics('llmCompletion', llmStartTime);
return completion.response;
}
// STAGE 1: Start with the user's query
const userQuery = input.query || '';
log.info(`========== STAGE 1: USER QUERY ==========`);
log.info(`Processing query with: question="${userQuery.substring(0, 50)}...", noteId=${input.noteId}, showThinking=${input.showThinking}`);
// STAGE 2: Perform query decomposition using the LLM
log.info(`========== STAGE 2: QUERY DECOMPOSITION ==========`);
log.info('Performing query decomposition to generate effective search queries');
const llmService = await this.getLLMService();
let searchQueries = [userQuery]; // Default to original query
if (llmService && llmService.generateSearchQueries) {
try {
const decompositionResult = await llmService.generateSearchQueries(userQuery);
if (decompositionResult && decompositionResult.length > 0) {
searchQueries = decompositionResult;
log.info(`Generated ${searchQueries.length} search queries: ${JSON.stringify(searchQueries)}`);
} else {
log.info('Query decomposition returned no results, using original query');
}
} catch (error: any) {
log.error(`Error in query decomposition: ${error.message || String(error)}`);
}
} else {
log.info('No LLM service available for query decomposition, using original query');
}
// STAGE 3: Execute vector similarity search with decomposed queries
const vectorSearchStartTime = Date.now();
log.info(`========== STAGE 3: VECTOR SEARCH ==========`);
log.info('Using VectorSearchStage pipeline component to find relevant notes');
const vectorSearchResult = await this.stages.vectorSearch.execute({
query: userQuery,
noteId: input.noteId || 'global',
options: {
maxResults: 5, // Can be adjusted
useEnhancedQueries: true,
threshold: 0.6,
llmService: llmService || undefined
}
});
this.updateStageMetrics('vectorSearch', vectorSearchStartTime);
log.info(`Vector search found ${vectorSearchResult.searchResults.length} relevant notes`);
// Extract context from search results
log.info(`========== SEMANTIC CONTEXT EXTRACTION ==========`);
const semanticContextStartTime = Date.now();
const semanticContext = await this.stages.semanticContextExtraction.execute({
noteId: input.noteId || 'global',
query: userQuery,
messages: input.messages,
searchResults: vectorSearchResult.searchResults
});
const context = semanticContext.context;
this.updateStageMetrics('semanticContextExtraction', semanticContextStartTime);
log.info(`Extracted semantic context (${context.length} chars)`);
// STAGE 4: Prepare messages with context and tool definitions for the LLM
log.info(`========== STAGE 4: MESSAGE PREPARATION ==========`);
const messagePreparationStartTime = Date.now();
const preparedMessages = await this.stages.messagePreparation.execute({
messages: input.messages,
context,
systemPrompt: input.options?.systemPrompt,
options: modelSelection.options
});
this.updateStageMetrics('messagePreparation', messagePreparationStartTime);
log.info(`Prepared ${preparedMessages.messages.length} messages for LLM, tools enabled: ${useTools}`);
// Setup streaming handler if streaming is enabled and callback provided
// Check if streaming should be enabled based on several conditions
const streamEnabledInConfig = this.config.enableStreaming;
const streamFormatRequested = input.format === 'stream';
const streamRequestedInOptions = modelSelection.options.stream === true;
const streamCallbackAvailable = typeof streamCallback === 'function';
log.info(`[ChatPipeline] Request type info - Format: ${input.format || 'not specified'}, Options from pipelineInput: ${JSON.stringify({stream: input.options?.stream})}`);
log.info(`[ChatPipeline] Stream settings - config.enableStreaming: ${streamEnabledInConfig}, format parameter: ${input.format}, modelSelection.options.stream: ${modelSelection.options.stream}, streamCallback available: ${streamCallbackAvailable}`);
// IMPORTANT: Respect the existing stream option but with special handling for callbacks:
// 1. If a stream callback is available, streaming MUST be enabled for it to work
// 2. Otherwise, preserve the original stream setting from input options
// First, determine what the stream value should be based on various factors:
let shouldEnableStream = modelSelection.options.stream;
if (streamCallbackAvailable) {
// If we have a stream callback, we NEED to enable streaming
// This is critical for GET requests with EventSource
shouldEnableStream = true;
log.info(`[ChatPipeline] Stream callback available, enabling streaming`);
} else if (streamRequestedInOptions) {
// Stream was explicitly requested in options, honor that setting
log.info(`[ChatPipeline] Stream explicitly requested in options: ${streamRequestedInOptions}`);
shouldEnableStream = streamRequestedInOptions;
} else if (streamFormatRequested) {
// Format=stream parameter indicates streaming was requested
log.info(`[ChatPipeline] Stream format requested in parameters`);
shouldEnableStream = true;
} else {
// No explicit streaming indicators, use config default
log.info(`[ChatPipeline] No explicit stream settings, using config default: ${streamEnabledInConfig}`);
shouldEnableStream = streamEnabledInConfig;
}
// Set the final stream option
modelSelection.options.stream = shouldEnableStream;
log.info(`[ChatPipeline] Final streaming decision: stream=${shouldEnableStream}, will stream to client=${streamCallbackAvailable && shouldEnableStream}`);
// STAGE 5 & 6: Handle LLM completion and tool execution loop
log.info(`========== STAGE 5: LLM COMPLETION ==========`);
const llmStartTime = Date.now();
const completion = await this.stages.llmCompletion.execute({
messages: preparedMessages.messages,
options: modelSelection.options
});
this.updateStageMetrics('llmCompletion', llmStartTime);
log.info(`Received LLM response from model: ${completion.response.model}, provider: ${completion.response.provider}`);
// Handle streaming if enabled and available
// Use shouldEnableStream variable which contains our streaming decision
if (shouldEnableStream && completion.response.stream && streamCallback) {
// Setup stream handler that passes chunks through response processing
await completion.response.stream(async (chunk: StreamChunk) => {
// Process the chunk text
const processedChunk = await this.processStreamChunk(chunk, input.options);
// Accumulate text for final response
accumulatedText += processedChunk.text;
// Forward to callback with original chunk data in case it contains additional information
await streamCallback!(processedChunk.text, processedChunk.done, chunk);
});
}
// Process any tool calls in the response
let currentMessages = preparedMessages.messages;
let currentResponse = completion.response;
let toolCallIterations = 0;
const maxToolCallIterations = this.config.maxToolCallIterations;
// Check if tools were enabled in the options
const toolsEnabled = modelSelection.options.enableTools !== false;
// Log decision points for tool execution
log.info(`========== TOOL EXECUTION DECISION ==========`);
log.info(`Tools enabled in options: ${toolsEnabled}`);
log.info(`Response provider: ${currentResponse.provider || 'unknown'}`);
log.info(`Response model: ${currentResponse.model || 'unknown'}`);
log.info(`Response has tool_calls: ${currentResponse.tool_calls ? 'true' : 'false'}`);
if (currentResponse.tool_calls) {
log.info(`Number of tool calls: ${currentResponse.tool_calls.length}`);
log.info(`Tool calls details: ${JSON.stringify(currentResponse.tool_calls)}`);
// Check if we have a response from Ollama, which might be handled differently
if (currentResponse.provider === 'Ollama') {
log.info(`ATTENTION: Response is from Ollama - checking if tool execution path is correct`);
log.info(`Tool calls type: ${typeof currentResponse.tool_calls}`);
log.info(`First tool call name: ${currentResponse.tool_calls[0]?.function?.name || 'unknown'}`);
}
}
// Tool execution loop
if (toolsEnabled && currentResponse.tool_calls && currentResponse.tool_calls.length > 0) {
log.info(`========== STAGE 6: TOOL EXECUTION ==========`);
log.info(`Response contains ${currentResponse.tool_calls.length} tool calls, processing...`);
// Format tool calls for logging
log.info(`========== TOOL CALL DETAILS ==========`);
currentResponse.tool_calls.forEach((toolCall, idx) => {
log.info(`Tool call ${idx + 1}: name=${toolCall.function?.name || 'unknown'}, id=${toolCall.id || 'no-id'}`);
log.info(`Arguments: ${toolCall.function?.arguments || '{}'}`);
});
// Keep track of whether we're in a streaming response
const isStreaming = shouldEnableStream && streamCallback;
let streamingPaused = false;
// If streaming was enabled, send an update to the user
if (isStreaming && streamCallback) {
streamingPaused = true;
// IMPORTANT: Don't send done:true here, as it causes the client to stop processing messages
// Instead, send a marker message that indicates tools will be executed
await streamCallback('\n\n[Executing tools...]\n\n', false);
}
while (toolCallIterations < maxToolCallIterations) {
toolCallIterations++;
log.info(`========== TOOL ITERATION ${toolCallIterations}/${maxToolCallIterations} ==========`);
// Create a copy of messages before tool execution
const previousMessages = [...currentMessages];
try {
const toolCallingStartTime = Date.now();
log.info(`========== PIPELINE TOOL EXECUTION FLOW ==========`);
log.info(`About to call toolCalling.execute with ${currentResponse.tool_calls.length} tool calls`);
log.info(`Tool calls being passed to stage: ${JSON.stringify(currentResponse.tool_calls)}`);
const toolCallingResult = await this.stages.toolCalling.execute({
response: currentResponse,
messages: currentMessages,
options: modelSelection.options
});
this.updateStageMetrics('toolCalling', toolCallingStartTime);
log.info(`ToolCalling stage execution complete, got result with needsFollowUp: ${toolCallingResult.needsFollowUp}`);
// Update messages with tool results
currentMessages = toolCallingResult.messages;
// Log the tool results for debugging
const toolResultMessages = currentMessages.filter(
msg => msg.role === 'tool' && !previousMessages.includes(msg)
);
log.info(`========== TOOL EXECUTION RESULTS ==========`);
toolResultMessages.forEach((msg, idx) => {
log.info(`Tool result ${idx + 1}: tool_call_id=${msg.tool_call_id}, content=${msg.content.substring(0, 50)}...`);
// If streaming, show tool executions to the user
if (isStreaming && streamCallback) {
// For each tool result, format a readable message for the user
const toolName = this.getToolNameFromToolCallId(currentMessages, msg.tool_call_id || '');
const formattedToolResult = `[Tool: ${toolName || 'unknown'}]\n${msg.content}\n\n`;
streamCallback(formattedToolResult, false);
}
});
// Check if we need another LLM completion for tool results
if (toolCallingResult.needsFollowUp) {
log.info(`========== TOOL FOLLOW-UP REQUIRED ==========`);
log.info('Tool execution complete, sending results back to LLM');
// Ensure messages are properly formatted
this.validateToolMessages(currentMessages);
// If streaming, show progress to the user
if (isStreaming && streamCallback) {
await streamCallback('[Generating response with tool results...]\n\n', false);
}
// Extract tool execution status information for Ollama feedback
let toolExecutionStatus;
if (currentResponse.provider === 'Ollama') {
// Collect tool execution status from the tool results
toolExecutionStatus = toolResultMessages.map(msg => {
// Determine if this was a successful tool call
const isError = msg.content.startsWith('Error:');
return {
toolCallId: msg.tool_call_id || '',
name: msg.name || 'unknown',
success: !isError,
result: msg.content,
error: isError ? msg.content.substring(7) : undefined
};
});
log.info(`Created tool execution status for Ollama: ${toolExecutionStatus.length} entries`);
toolExecutionStatus.forEach((status, idx) => {
log.info(`Tool status ${idx + 1}: ${status.name} - ${status.success ? 'success' : 'failed'}`);
});
}
// Generate a new completion with the updated messages
const followUpStartTime = Date.now();
const followUpCompletion = await this.stages.llmCompletion.execute({
messages: currentMessages,
options: {
...modelSelection.options,
// Ensure tool support is still enabled for follow-up requests
enableTools: true,
// Preserve original streaming setting for tool execution follow-ups
stream: modelSelection.options.stream,
// Add tool execution status for Ollama provider
...(currentResponse.provider === 'Ollama' ? { toolExecutionStatus } : {})
}
});
this.updateStageMetrics('llmCompletion', followUpStartTime);
// Update current response for the next iteration
currentResponse = followUpCompletion.response;
// Check if we need to continue the tool calling loop
if (!currentResponse.tool_calls || currentResponse.tool_calls.length === 0) {
log.info(`========== TOOL EXECUTION COMPLETE ==========`);
log.info('No more tool calls, breaking tool execution loop');
break;
} else {
log.info(`========== ADDITIONAL TOOL CALLS DETECTED ==========`);
log.info(`Next iteration has ${currentResponse.tool_calls.length} more tool calls`);
// Log the next set of tool calls
currentResponse.tool_calls.forEach((toolCall, idx) => {
log.info(`Next tool call ${idx + 1}: name=${toolCall.function?.name || 'unknown'}, id=${toolCall.id || 'no-id'}`);
log.info(`Arguments: ${toolCall.function?.arguments || '{}'}`);
});
}
} else {
log.info(`========== TOOL EXECUTION COMPLETE ==========`);
log.info('No follow-up needed, breaking tool execution loop');
break;
}
} catch (error: any) {
log.info(`========== TOOL EXECUTION ERROR ==========`);
log.error(`Error in tool execution: ${error.message || String(error)}`);
// Add error message to the conversation if tool execution fails
currentMessages.push({
role: 'system',
content: `Error executing tool: ${error.message || String(error)}. Please try a different approach.`
});
// If streaming, show error to the user
if (isStreaming && streamCallback) {
await streamCallback(`[Tool execution error: ${error.message || 'unknown error'}]\n\n`, false);
}
// For Ollama, create tool execution status with the error
let toolExecutionStatus;
if (currentResponse.provider === 'Ollama' && currentResponse.tool_calls) {
// We need to create error statuses for all tool calls that failed
toolExecutionStatus = currentResponse.tool_calls.map(toolCall => {
return {
toolCallId: toolCall.id || '',
name: toolCall.function?.name || 'unknown',
success: false,
result: `Error: ${error.message || 'unknown error'}`,
error: error.message || 'unknown error'
};
});
log.info(`Created error tool execution status for Ollama: ${toolExecutionStatus.length} entries`);
}
// Make a follow-up request to the LLM with the error information
const errorFollowUpCompletion = await this.stages.llmCompletion.execute({
messages: currentMessages,
options: {
...modelSelection.options,
// Preserve streaming for error follow-up
stream: modelSelection.options.stream,
// For Ollama, include tool execution status
...(currentResponse.provider === 'Ollama' ? { toolExecutionStatus } : {})
}
});
// Update current response and break the tool loop
currentResponse = errorFollowUpCompletion.response;
break;
}
}
if (toolCallIterations >= maxToolCallIterations) {
log.info(`========== MAXIMUM TOOL ITERATIONS REACHED ==========`);
log.error(`Reached maximum tool call iterations (${maxToolCallIterations}), terminating loop`);
// Add a message to inform the LLM that we've reached the limit
currentMessages.push({
role: 'system',
content: `Maximum tool call iterations (${maxToolCallIterations}) reached. Please provide your best response with the information gathered so far.`
});
// If streaming, inform the user about iteration limit
if (isStreaming && streamCallback) {
await streamCallback(`[Reached maximum of ${maxToolCallIterations} tool calls. Finalizing response...]\n\n`, false);
}
// For Ollama, create a status about reaching max iterations
let toolExecutionStatus;
if (currentResponse.provider === 'Ollama' && currentResponse.tool_calls) {
// Create a special status message about max iterations
toolExecutionStatus = [
{
toolCallId: 'max-iterations',
name: 'system',
success: false,
result: `Maximum tool call iterations (${maxToolCallIterations}) reached.`,
error: `Reached the maximum number of allowed tool calls (${maxToolCallIterations}). Please provide a final response with the information gathered so far.`
}
];
log.info(`Created max iterations status for Ollama`);
}
// Make a final request to get a summary response
const finalFollowUpCompletion = await this.stages.llmCompletion.execute({
messages: currentMessages,
options: {
...modelSelection.options,
enableTools: false, // Disable tools for the final response
// Preserve streaming setting for max iterations response
stream: modelSelection.options.stream,
// For Ollama, include tool execution status
...(currentResponse.provider === 'Ollama' ? { toolExecutionStatus } : {})
}
});
// Update the current response
currentResponse = finalFollowUpCompletion.response;
}
// If streaming was paused for tool execution, resume it now with the final response
if (isStreaming && streamCallback && streamingPaused) {
// First log for debugging
log.info(`Resuming streaming with final response: ${currentResponse.text.length} chars`);
// Resume streaming with the final response text
// This is where we send the definitive done:true signal with the complete content
await streamCallback(currentResponse.text, true);
// Log confirmation
log.info(`Sent final response with done=true signal`);
}
} else if (toolsEnabled) {
log.info(`========== NO TOOL CALLS DETECTED ==========`);
log.info(`LLM response did not contain any tool calls, skipping tool execution`);
}
// Process the final response
log.info(`========== FINAL RESPONSE PROCESSING ==========`);
const responseProcessingStartTime = Date.now();
const processedResponse = await this.stages.responseProcessing.execute({
response: currentResponse,
options: modelSelection.options
});
this.updateStageMetrics('responseProcessing', responseProcessingStartTime);
log.info(`Final response processed, returning to user (${processedResponse.text.length} chars)`);
// Return the final response to the user
// The ResponseProcessingStage returns {text}, not {response}
// So we update our currentResponse with the processed text
currentResponse.text = processedResponse.text;
log.info(`========== PIPELINE COMPLETE ==========`);
return currentResponse;
} catch (error: any) {
log.info(`========== PIPELINE ERROR ==========`);
log.error(`Error in chat pipeline: ${error.message || String(error)}`);
throw error;
}
}
/**
* Helper method to get an LLM service for query processing
*/
private async getLLMService(): Promise<LLMServiceInterface | null> {
try {
const aiServiceManager = await import('../ai_service_manager.js').then(module => module.default);
return aiServiceManager.getService();
} catch (error: any) {
log.error(`Error getting LLM service: ${error.message || String(error)}`);
return null;
}
}
/**
* Process a stream chunk through the response processing stage
*/
private async processStreamChunk(chunk: StreamChunk, options?: any): Promise<StreamChunk> {
try {
// Only process non-empty chunks
if (!chunk.text) return chunk;
// Create a minimal response object for the processor
const miniResponse = {
text: chunk.text,
model: 'streaming',
provider: 'streaming'
};
// Process the chunk text
const processed = await this.stages.responseProcessing.execute({
response: miniResponse,
options: options
});
// Return processed chunk
return {
...chunk,
text: processed.text
};
} catch (error) {
// On error, return original chunk
log.error(`Error processing stream chunk: ${error}`);
return chunk;
}
}
/**
* Update metrics for a pipeline stage
*/
private updateStageMetrics(stageName: string, startTime: number) {
if (!this.config.enableMetrics) return;
const executionTime = Date.now() - startTime;
const metrics = this.metrics.stageMetrics[stageName];
metrics.totalExecutions++;
metrics.averageExecutionTime =
(metrics.averageExecutionTime * (metrics.totalExecutions - 1) + executionTime) /
metrics.totalExecutions;
}
/**
* Get the current pipeline metrics
*/
getMetrics(): PipelineMetrics {
return this.metrics;
}
/**
* Reset pipeline metrics
*/
resetMetrics(): void {
this.metrics.totalExecutions = 0;
this.metrics.averageExecutionTime = 0;
Object.keys(this.metrics.stageMetrics).forEach(stageName => {
this.metrics.stageMetrics[stageName] = {
totalExecutions: 0,
averageExecutionTime: 0
};
});
}
/**
* Find tool name from tool call ID by looking at previous assistant messages
*/
private getToolNameFromToolCallId(messages: Message[], toolCallId: string): string {
if (!toolCallId) return 'unknown';
// Look for assistant messages with tool_calls
for (let i = messages.length - 1; i >= 0; i--) {
const message = messages[i];
if (message.role === 'assistant' && message.tool_calls) {
// Find the tool call with the matching ID
const toolCall = message.tool_calls.find(tc => tc.id === toolCallId);
if (toolCall && toolCall.function && toolCall.function.name) {
return toolCall.function.name;
}
}
}
return 'unknown';
}
/**
* Validate tool messages to ensure they're properly formatted
*/
private validateToolMessages(messages: Message[]): void {
for (let i = 0; i < messages.length; i++) {
const message = messages[i];
// Ensure tool messages have required fields
if (message.role === 'tool') {
if (!message.tool_call_id) {
log.info(`Tool message missing tool_call_id, adding placeholder`);
message.tool_call_id = `tool_${i}`;
}
// Content should be a string
if (typeof message.content !== 'string') {
log.info(`Tool message content is not a string, converting`);
try {
message.content = JSON.stringify(message.content);
} catch (e) {
message.content = String(message.content);
}
}
}
}
}
}