Notes/apps/server/src/routes/api/embeddings.ts

844 lines
24 KiB
TypeScript

import options from "../../services/options.js";
import vectorStore from "../../services/llm/embeddings/index.js";
import providerManager from "../../services/llm/providers/providers.js";
import indexService from "../../services/llm/index_service.js";
import becca from "../../becca/becca.js";
import type { Request, Response } from "express";
import log from "../../services/log.js";
import sql from "../../services/sql.js";
/**
* @swagger
* /api/llm/embeddings/similar/{noteId}:
* get:
* summary: Find similar notes based on a given note ID
* operationId: embeddings-similar-by-note
* parameters:
* - name: noteId
* in: path
* required: true
* schema:
* type: string
* - name: providerId
* in: query
* required: false
* schema:
* type: string
* default: openai
* description: Embedding provider ID
* - name: modelId
* in: query
* required: false
* schema:
* type: string
* default: text-embedding-3-small
* description: Embedding model ID
* - name: limit
* in: query
* required: false
* schema:
* type: integer
* default: 10
* description: Maximum number of similar notes to return
* - name: threshold
* in: query
* required: false
* schema:
* type: number
* format: float
* default: 0.7
* description: Similarity threshold (0.0-1.0)
* responses:
* '200':
* description: List of similar notes
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* similarNotes:
* type: array
* items:
* type: object
* properties:
* noteId:
* type: string
* title:
* type: string
* similarity:
* type: number
* format: float
* '400':
* description: Invalid request parameters
* '404':
* description: Note not found
* security:
* - session: []
* tags: ["llm"]
*/
async function findSimilarNotes(req: Request, res: Response) {
const noteId = req.params.noteId;
const providerId = req.query.providerId as string || 'openai';
const modelId = req.query.modelId as string || 'text-embedding-3-small';
const limit = parseInt(req.query.limit as string || '10', 10);
const threshold = parseFloat(req.query.threshold as string || '0.7');
if (!noteId) {
return [400, {
success: false,
message: "Note ID is required"
}];
}
const embedding = await vectorStore.getEmbeddingForNote(noteId, providerId, modelId);
if (!embedding) {
// If no embedding exists for this note yet, generate one
const note = becca.getNote(noteId);
if (!note) {
return [404, {
success: false,
message: "Note not found"
}];
}
const context = await vectorStore.getNoteEmbeddingContext(noteId);
const provider = providerManager.getEmbeddingProvider(providerId);
if (!provider) {
return [400, {
success: false,
message: `Embedding provider '${providerId}' not found`
}];
}
const newEmbedding = await provider.generateNoteEmbeddings(context);
await vectorStore.storeNoteEmbedding(noteId, providerId, modelId, newEmbedding);
const similarNotes = await vectorStore.findSimilarNotes(
newEmbedding, providerId, modelId, limit, threshold
);
return {
success: true,
similarNotes
};
}
const similarNotes = await vectorStore.findSimilarNotes(
embedding.embedding, providerId, modelId, limit, threshold
);
return {
success: true,
similarNotes
};
}
/**
* @swagger
* /api/llm/embeddings/search:
* post:
* summary: Search for notes similar to provided text
* operationId: embeddings-search-by-text
* parameters:
* - name: providerId
* in: query
* required: false
* schema:
* type: string
* default: openai
* description: Embedding provider ID
* - name: modelId
* in: query
* required: false
* schema:
* type: string
* default: text-embedding-3-small
* description: Embedding model ID
* - name: limit
* in: query
* required: false
* schema:
* type: integer
* default: 10
* description: Maximum number of similar notes to return
* - name: threshold
* in: query
* required: false
* schema:
* type: number
* format: float
* default: 0.7
* description: Similarity threshold (0.0-1.0)
* requestBody:
* required: true
* content:
* application/json:
* schema:
* type: object
* properties:
* text:
* type: string
* description: Text to search with
* responses:
* '200':
* description: List of similar notes
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* similarNotes:
* type: array
* items:
* type: object
* properties:
* noteId:
* type: string
* title:
* type: string
* similarity:
* type: number
* format: float
* '400':
* description: Invalid request parameters
* security:
* - session: []
* tags: ["llm"]
*/
async function searchByText(req: Request, res: Response) {
const { text } = req.body;
const providerId = req.query.providerId as string || 'openai';
const modelId = req.query.modelId as string || 'text-embedding-3-small';
const limit = parseInt(req.query.limit as string || '10', 10);
const threshold = parseFloat(req.query.threshold as string || '0.7');
if (!text) {
return [400, {
success: false,
message: "Search text is required"
}];
}
const provider = providerManager.getEmbeddingProvider(providerId);
if (!provider) {
return [400, {
success: false,
message: `Embedding provider '${providerId}' not found`
}];
}
// Generate embedding for the search text
const embedding = await provider.generateEmbeddings(text);
// Find similar notes
const similarNotes = await vectorStore.findSimilarNotes(
embedding, providerId, modelId, limit, threshold
);
return {
success: true,
similarNotes
};
}
/**
* @swagger
* /api/llm/embeddings/providers:
* get:
* summary: Get available embedding providers
* operationId: embeddings-get-providers
* responses:
* '200':
* description: List of available embedding providers
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* providers:
* type: array
* items:
* type: object
* properties:
* id:
* type: string
* name:
* type: string
* isEnabled:
* type: boolean
* priority:
* type: integer
* config:
* type: object
* security:
* - session: []
* tags: ["llm"]
*/
async function getProviders(req: Request, res: Response) {
const providerConfigs = await providerManager.getEmbeddingProviderConfigs();
return {
success: true,
providers: providerConfigs
};
}
/**
* @swagger
* /api/llm/embeddings/providers/{providerId}:
* patch:
* summary: Update embedding provider configuration
* operationId: embeddings-update-provider
* parameters:
* - name: providerId
* in: path
* required: true
* schema:
* type: string
* description: Provider ID to update
* requestBody:
* required: true
* content:
* application/json:
* schema:
* type: object
* properties:
* enabled:
* type: boolean
* description: Whether provider is enabled
* priority:
* type: integer
* description: Priority order (lower is higher priority)
* config:
* type: object
* description: Provider-specific configuration
* responses:
* '200':
* description: Provider updated successfully
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* '400':
* description: Invalid provider ID or configuration
* security:
* - session: []
* tags: ["llm"]
*/
async function updateProvider(req: Request, res: Response) {
const { providerId } = req.params;
const { isEnabled, priority, config } = req.body;
const success = await providerManager.updateEmbeddingProviderConfig(
providerId, isEnabled, priority
);
if (!success) {
return [404, {
success: false,
message: "Provider not found"
}];
}
return {
success: true
};
}
/**
* @swagger
* /api/llm/embeddings/reprocess:
* post:
* summary: Reprocess embeddings for all notes
* operationId: embeddings-reprocess-all
* requestBody:
* required: true
* content:
* application/json:
* schema:
* type: object
* properties:
* providerId:
* type: string
* description: Provider ID to use for reprocessing
* modelId:
* type: string
* description: Model ID to use for reprocessing
* forceReprocess:
* type: boolean
* description: Whether to reprocess notes that already have embeddings
* responses:
* '200':
* description: Reprocessing started
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* jobId:
* type: string
* message:
* type: string
* '400':
* description: Invalid provider ID or configuration
* security:
* - session: []
* tags: ["llm"]
*/
async function reprocessAllNotes(req: Request, res: Response) {
// Import cls
const cls = (await import("../../services/cls.js")).default;
// Start the reprocessing operation in the background
setTimeout(async () => {
try {
// Wrap the operation in cls.init to ensure proper context
cls.init(async () => {
await vectorStore.reprocessAllNotes();
log.info("Embedding reprocessing completed successfully");
});
} catch (error: any) {
log.error(`Error during background embedding reprocessing: ${error.message || "Unknown error"}`);
}
}, 0);
// Return the response data
return {
success: true,
message: "Embedding reprocessing started in the background"
};
}
/**
* @swagger
* /api/llm/embeddings/queue-status:
* get:
* summary: Get status of the embedding processing queue
* operationId: embeddings-queue-status
* parameters:
* - name: jobId
* in: query
* required: false
* schema:
* type: string
* description: Optional job ID to get status for a specific processing job
* responses:
* '200':
* description: Queue status information
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* status:
* type: string
* enum: [idle, processing, paused]
* progress:
* type: number
* format: float
* description: Progress percentage (0-100)
* details:
* type: object
* security:
* - session: []
* tags: ["llm"]
*/
async function getQueueStatus(req: Request, res: Response) {
// Use the imported sql instead of requiring it
const queueCount = await sql.getValue(
"SELECT COUNT(*) FROM embedding_queue"
);
const failedCount = await sql.getValue(
"SELECT COUNT(*) FROM embedding_queue WHERE attempts > 0"
);
const totalEmbeddingsCount = await sql.getValue(
"SELECT COUNT(*) FROM note_embeddings"
);
return {
success: true,
status: {
queueCount,
failedCount,
totalEmbeddingsCount
}
};
}
/**
* @swagger
* /api/llm/embeddings/stats:
* get:
* summary: Get embedding statistics
* operationId: embeddings-stats
* responses:
* '200':
* description: Embedding statistics
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* stats:
* type: object
* properties:
* totalEmbeddings:
* type: integer
* providers:
* type: object
* modelCounts:
* type: object
* lastUpdated:
* type: string
* format: date-time
* security:
* - session: []
* tags: ["llm"]
*/
async function getEmbeddingStats(req: Request, res: Response) {
const stats = await vectorStore.getEmbeddingStats();
return {
success: true,
stats
};
}
/**
* @swagger
* /api/llm/embeddings/failed:
* get:
* summary: Get list of notes that failed embedding generation
* operationId: embeddings-failed-notes
* responses:
* '200':
* description: List of failed notes
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* failedNotes:
* type: array
* items:
* type: object
* properties:
* noteId:
* type: string
* title:
* type: string
* error:
* type: string
* failedAt:
* type: string
* format: date-time
* security:
* - session: []
* tags: ["llm"]
*/
async function getFailedNotes(req: Request, res: Response) {
const limit = parseInt(req.query.limit as string || '100', 10);
const failedNotes = await vectorStore.getFailedEmbeddingNotes(limit);
// No need to fetch note titles here anymore as they're already included in the response
return {
success: true,
failedNotes: failedNotes
};
}
/**
* @swagger
* /api/llm/embeddings/retry/{noteId}:
* post:
* summary: Retry generating embeddings for a failed note
* operationId: embeddings-retry-note
* parameters:
* - name: noteId
* in: path
* required: true
* schema:
* type: string
* description: Note ID to retry
* - name: providerId
* in: query
* required: false
* schema:
* type: string
* description: Provider ID to use (defaults to configured default)
* - name: modelId
* in: query
* required: false
* schema:
* type: string
* description: Model ID to use (defaults to provider default)
* responses:
* '200':
* description: Retry result
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* message:
* type: string
* '400':
* description: Invalid request
* '404':
* description: Note not found
* security:
* - session: []
* tags: ["llm"]
*/
async function retryFailedNote(req: Request, res: Response) {
const { noteId } = req.params;
if (!noteId) {
return [400, {
success: false,
message: "Note ID is required"
}];
}
const success = await vectorStore.retryFailedEmbedding(noteId);
if (!success) {
return [404, {
success: false,
message: "Failed note not found or note is not marked as failed"
}];
}
return {
success: true,
message: "Note queued for retry"
};
}
/**
* @swagger
* /api/llm/embeddings/retry-all-failed:
* post:
* summary: Retry generating embeddings for all failed notes
* operationId: embeddings-retry-all-failed
* requestBody:
* required: false
* content:
* application/json:
* schema:
* type: object
* properties:
* providerId:
* type: string
* description: Provider ID to use (defaults to configured default)
* modelId:
* type: string
* description: Model ID to use (defaults to provider default)
* responses:
* '200':
* description: Retry started
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* message:
* type: string
* jobId:
* type: string
* security:
* - session: []
* tags: ["llm"]
*/
async function retryAllFailedNotes(req: Request, res: Response) {
const count = await vectorStore.retryAllFailedEmbeddings();
return {
success: true,
message: `${count} failed notes queued for retry`
};
}
/**
* @swagger
* /api/llm/embeddings/rebuild-index:
* post:
* summary: Rebuild the vector store index
* operationId: embeddings-rebuild-index
* responses:
* '200':
* description: Rebuild started
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* message:
* type: string
* jobId:
* type: string
* security:
* - session: []
* tags: ["llm"]
*/
async function rebuildIndex(req: Request, res: Response) {
// Start the index rebuilding operation in the background
setTimeout(async () => {
try {
await indexService.startFullIndexing(true);
log.info("Index rebuilding completed successfully");
} catch (error: any) {
log.error(`Error during background index rebuilding: ${error.message || "Unknown error"}`);
}
}, 0);
// Return the response data
return {
success: true,
message: "Index rebuilding started in the background"
};
}
/**
* @swagger
* /api/llm/embeddings/index-rebuild-status:
* get:
* summary: Get status of the vector index rebuild operation
* operationId: embeddings-rebuild-status
* parameters:
* - name: jobId
* in: query
* required: false
* schema:
* type: string
* description: Optional job ID to get status for a specific rebuild job
* responses:
* '200':
* description: Rebuild status information
* content:
* application/json:
* schema:
* type: object
* properties:
* success:
* type: boolean
* status:
* type: string
* enum: [idle, in_progress, completed, failed]
* progress:
* type: number
* format: float
* description: Progress percentage (0-100)
* message:
* type: string
* details:
* type: object
* properties:
* startTime:
* type: string
* format: date-time
* processed:
* type: integer
* total:
* type: integer
* security:
* - session: []
* tags: ["llm"]
*/
async function getIndexRebuildStatus(req: Request, res: Response) {
const status = indexService.getIndexRebuildStatus();
return {
success: true,
status
};
}
/**
* Start embedding generation when AI is enabled
*/
async function startEmbeddings(req: Request, res: Response) {
try {
log.info("Starting embedding generation system");
// Initialize the index service if not already initialized
await indexService.initialize();
// Start automatic indexing
await indexService.startEmbeddingGeneration();
return {
success: true,
message: "Embedding generation started"
};
} catch (error: any) {
log.error(`Error starting embeddings: ${error.message || 'Unknown error'}`);
throw new Error(`Failed to start embeddings: ${error.message || 'Unknown error'}`);
}
}
/**
* Stop embedding generation when AI is disabled
*/
async function stopEmbeddings(req: Request, res: Response) {
try {
log.info("Stopping embedding generation system");
// Stop automatic indexing
await indexService.stopEmbeddingGeneration();
return {
success: true,
message: "Embedding generation stopped"
};
} catch (error: any) {
log.error(`Error stopping embeddings: ${error.message || 'Unknown error'}`);
throw new Error(`Failed to stop embeddings: ${error.message || 'Unknown error'}`);
}
}
export default {
findSimilarNotes,
searchByText,
getProviders,
updateProvider,
reprocessAllNotes,
getQueueStatus,
getEmbeddingStats,
getFailedNotes,
retryFailedNote,
retryAllFailedNotes,
rebuildIndex,
getIndexRebuildStatus,
startEmbeddings,
stopEmbeddings
};