mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-08-10 18:39:22 +08:00
centralize all prompts
This commit is contained in:
parent
4ff3c5abcf
commit
e566692361
@ -13,6 +13,7 @@ import contextService from "../../services/llm/context_service.js";
|
||||
import sql from "../../services/sql.js";
|
||||
// Import the index service for knowledge base management
|
||||
import indexService from "../../services/llm/index_service.js";
|
||||
import { CONTEXT_PROMPTS } from '../../services/llm/llm_prompt_constants.js';
|
||||
|
||||
// LLM service constants
|
||||
export const LLM_CONSTANTS = {
|
||||
@ -504,7 +505,7 @@ async function findRelevantNotes(content: string, contextNoteId: string | null =
|
||||
}
|
||||
|
||||
/**
|
||||
* Build context from notes
|
||||
* Build a prompt with context from relevant notes
|
||||
*/
|
||||
function buildContextFromNotes(sources: NoteSource[], query: string): string {
|
||||
console.log("Building context from notes with query:", query);
|
||||
@ -529,14 +530,10 @@ function buildContextFromNotes(sources: NoteSource[], query: string): string {
|
||||
return query || '';
|
||||
}
|
||||
|
||||
// Build a complete context prompt with clearer instructions
|
||||
return `I'll provide you with relevant information from my notes to help answer your question.
|
||||
|
||||
${noteContexts}
|
||||
|
||||
When referring to information from these notes in your response, please cite them by their titles (e.g., "According to your note on [Title]...") rather than using labels like "Note 1" or "Note 2".
|
||||
|
||||
Now, based on the above information, please answer: ${query}`;
|
||||
// Use the template from the constants file, replacing placeholders
|
||||
return CONTEXT_PROMPTS.CONTEXT_NOTES_WRAPPER
|
||||
.replace('{noteContexts}', noteContexts)
|
||||
.replace('{query}', query);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -15,6 +15,7 @@
|
||||
|
||||
import log from "../../log.js";
|
||||
import aiServiceManager from "../ai_service_manager.js";
|
||||
import { AGENT_TOOL_PROMPTS } from '../llm_prompt_constants.js';
|
||||
|
||||
/**
|
||||
* Represents a single reasoning step taken by the agent
|
||||
@ -73,17 +74,17 @@ export class ContextualThinkingTool {
|
||||
// Initialize with some starter thinking steps
|
||||
this.addThinkingStep(thinkingId, {
|
||||
type: 'observation',
|
||||
content: `Starting analysis of the query: "${query}"`
|
||||
content: AGENT_TOOL_PROMPTS.CONTEXTUAL_THINKING.STARTING_ANALYSIS(query)
|
||||
});
|
||||
|
||||
this.addThinkingStep(thinkingId, {
|
||||
type: 'question',
|
||||
content: `What are the key components of this query that need to be addressed?`
|
||||
content: AGENT_TOOL_PROMPTS.CONTEXTUAL_THINKING.KEY_COMPONENTS
|
||||
});
|
||||
|
||||
this.addThinkingStep(thinkingId, {
|
||||
type: 'observation',
|
||||
content: `Breaking down the query to understand its requirements and context.`
|
||||
content: AGENT_TOOL_PROMPTS.CONTEXTUAL_THINKING.BREAKING_DOWN
|
||||
});
|
||||
|
||||
return thinkingId;
|
||||
|
@ -13,6 +13,7 @@
|
||||
*/
|
||||
|
||||
import log from '../../log.js';
|
||||
import { AGENT_TOOL_PROMPTS } from '../llm_prompt_constants.js';
|
||||
|
||||
export interface SubQuery {
|
||||
id: string;
|
||||
@ -66,7 +67,7 @@ export class QueryDecompositionTool {
|
||||
const mainSubQuery = {
|
||||
id: this.generateSubQueryId(),
|
||||
text: query,
|
||||
reason: 'Direct question that can be answered without decomposition',
|
||||
reason: AGENT_TOOL_PROMPTS.QUERY_DECOMPOSITION.SUB_QUERY_DIRECT,
|
||||
isAnswered: false
|
||||
};
|
||||
|
||||
@ -74,7 +75,7 @@ export class QueryDecompositionTool {
|
||||
const genericQuery = {
|
||||
id: this.generateSubQueryId(),
|
||||
text: `Information related to ${query}`,
|
||||
reason: "Generic exploration to find related content",
|
||||
reason: AGENT_TOOL_PROMPTS.QUERY_DECOMPOSITION.SUB_QUERY_GENERIC,
|
||||
isAnswered: false
|
||||
};
|
||||
|
||||
@ -110,7 +111,7 @@ export class QueryDecompositionTool {
|
||||
subQueries: [{
|
||||
id: this.generateSubQueryId(),
|
||||
text: query,
|
||||
reason: 'Error in decomposition, treating as simple query',
|
||||
reason: AGENT_TOOL_PROMPTS.QUERY_DECOMPOSITION.SUB_QUERY_ERROR,
|
||||
isAnswered: false
|
||||
}],
|
||||
status: 'pending',
|
||||
@ -290,7 +291,7 @@ export class QueryDecompositionTool {
|
||||
return [{
|
||||
id: this.generateSubQueryId(),
|
||||
text: query,
|
||||
reason: 'Direct analysis of note details',
|
||||
reason: AGENT_TOOL_PROMPTS.QUERY_DECOMPOSITION.SUB_QUERY_DIRECT_ANALYSIS,
|
||||
isAnswered: false
|
||||
}];
|
||||
}
|
||||
@ -299,7 +300,7 @@ export class QueryDecompositionTool {
|
||||
subQueries.push({
|
||||
id: this.generateSubQueryId(),
|
||||
text: query,
|
||||
reason: 'Original query',
|
||||
reason: AGENT_TOOL_PROMPTS.QUERY_DECOMPOSITION.ORIGINAL_QUERY,
|
||||
isAnswered: false
|
||||
});
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import options from '../options.js';
|
||||
import type { AIService, ChatCompletionOptions, ChatResponse, Message } from './ai_interface.js';
|
||||
import { DEFAULT_SYSTEM_PROMPT } from './llm_prompt_constants.js';
|
||||
|
||||
export abstract class BaseAIService implements AIService {
|
||||
protected name: string;
|
||||
@ -19,11 +20,7 @@ export abstract class BaseAIService implements AIService {
|
||||
}
|
||||
|
||||
protected getSystemPrompt(customPrompt?: string): string {
|
||||
// Default system prompt if none is provided
|
||||
return customPrompt ||
|
||||
"You are a helpful assistant embedded in the Trilium Notes application. " +
|
||||
"You can help users with their notes, answer questions, and provide information. " +
|
||||
"Keep your responses concise and helpful. " +
|
||||
"You're currently chatting with the user about their notes.";
|
||||
// Use prompt from constants file if no custom prompt is provided
|
||||
return customPrompt || DEFAULT_SYSTEM_PROMPT;
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
import sanitizeHtml from 'sanitize-html';
|
||||
import log from '../../../log.js';
|
||||
import { CONTEXT_PROMPTS } from '../../llm_prompt_constants.js';
|
||||
|
||||
// Constants for context window sizes, defines in-module to avoid circular dependencies
|
||||
const CONTEXT_WINDOW = {
|
||||
@ -23,10 +24,8 @@ export class ContextFormatter {
|
||||
*/
|
||||
async buildContextFromNotes(sources: any[], query: string, providerId: string = 'default'): Promise<string> {
|
||||
if (!sources || sources.length === 0) {
|
||||
// Return a default context instead of empty string
|
||||
return "I am an AI assistant helping you with your Trilium notes. " +
|
||||
"I couldn't find any specific notes related to your query, but I'll try to assist you " +
|
||||
"with general knowledge about Trilium or other topics you're interested in.";
|
||||
// Return a default context from constants instead of empty string
|
||||
return CONTEXT_PROMPTS.NO_NOTES_CONTEXT;
|
||||
}
|
||||
|
||||
try {
|
||||
@ -42,8 +41,8 @@ export class ContextFormatter {
|
||||
|
||||
// Start with different headers based on provider
|
||||
let context = isAnthropicFormat
|
||||
? `I'm your AI assistant helping with your Trilium notes database. For your query: "${query}", I found these relevant notes:\n\n`
|
||||
: `I've found some relevant information in your notes that may help answer: "${query}"\n\n`;
|
||||
? CONTEXT_PROMPTS.CONTEXT_HEADERS.ANTHROPIC(query)
|
||||
: CONTEXT_PROMPTS.CONTEXT_HEADERS.DEFAULT(query);
|
||||
|
||||
// Sort sources by similarity if available to prioritize most relevant
|
||||
if (sources[0] && sources[0].similarity !== undefined) {
|
||||
@ -97,8 +96,8 @@ export class ContextFormatter {
|
||||
|
||||
// Add closing to provide instructions to the AI
|
||||
const closing = isAnthropicFormat
|
||||
? "\n\nPlease use this information to answer the user's query. If the notes don't contain enough information, you can use your general knowledge as well."
|
||||
: "\n\nBased on this information from the user's notes, please provide a helpful response.";
|
||||
? CONTEXT_PROMPTS.CONTEXT_CLOSINGS.ANTHROPIC
|
||||
: CONTEXT_PROMPTS.CONTEXT_CLOSINGS.DEFAULT;
|
||||
|
||||
// Check if adding the closing would exceed our limit
|
||||
if (totalSize + closing.length <= maxTotalLength) {
|
||||
@ -108,7 +107,7 @@ export class ContextFormatter {
|
||||
return context;
|
||||
} catch (error) {
|
||||
log.error(`Error building context from notes: ${error}`);
|
||||
return "I'm your AI assistant helping with your Trilium notes. I'll try to answer based on what I know.";
|
||||
return CONTEXT_PROMPTS.ERROR_FALLBACK_CONTEXT;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -6,6 +6,7 @@ import queryEnhancer from './query_enhancer.js';
|
||||
import contextFormatter from './context_formatter.js';
|
||||
import aiServiceManager from '../../ai_service_manager.js';
|
||||
import { ContextExtractor } from '../index.js';
|
||||
import { CONTEXT_PROMPTS } from '../../llm_prompt_constants.js';
|
||||
|
||||
/**
|
||||
* Main context service that integrates all context-related functionality
|
||||
@ -84,8 +85,7 @@ export class ContextService {
|
||||
log.error(`Failed to initialize ContextService: ${error}`);
|
||||
// Return a fallback response if initialization fails
|
||||
return {
|
||||
context: "I am an AI assistant helping you with your Trilium notes. " +
|
||||
"I'll try to assist you with general knowledge about your query.",
|
||||
context: CONTEXT_PROMPTS.NO_NOTES_CONTEXT,
|
||||
notes: [],
|
||||
queries: [userQuestion]
|
||||
};
|
||||
@ -175,8 +175,7 @@ export class ContextService {
|
||||
} catch (error) {
|
||||
log.error(`Error processing query: ${error}`);
|
||||
return {
|
||||
context: "I am an AI assistant helping you with your Trilium notes. " +
|
||||
"I'll try to assist you with general knowledge about your query.",
|
||||
context: CONTEXT_PROMPTS.NO_NOTES_CONTEXT,
|
||||
notes: [],
|
||||
queries: [userQuestion]
|
||||
};
|
||||
|
@ -1,17 +1,14 @@
|
||||
import log from '../../../log.js';
|
||||
import cacheManager from './cache_manager.js';
|
||||
import type { Message } from '../../ai_interface.js';
|
||||
import { CONTEXT_PROMPTS } from '../../llm_prompt_constants.js';
|
||||
|
||||
/**
|
||||
* Provides utilities for enhancing queries and generating search queries
|
||||
*/
|
||||
export class QueryEnhancer {
|
||||
// Default meta-prompt for query enhancement
|
||||
private metaPrompt = `You are an AI assistant that decides what information needs to be retrieved from a user's knowledge base called TriliumNext Notes to answer the user's question.
|
||||
Given the user's question, generate 3-5 specific search queries that would help find relevant information.
|
||||
Each query should be focused on a different aspect of the question.
|
||||
Format your answer as a JSON array of strings, with each string being a search query.
|
||||
Example: ["exact topic mentioned", "related concept 1", "related concept 2"]`;
|
||||
// Use the centralized query enhancer prompt
|
||||
private metaPrompt = CONTEXT_PROMPTS.QUERY_ENHANCER;
|
||||
|
||||
/**
|
||||
* Generate search queries to find relevant information for the user question
|
||||
|
@ -20,6 +20,7 @@ import type { NoteEmbeddingContext } from "./embeddings/embeddings_interface.js"
|
||||
import type { OptionDefinitions } from "../options_interface.js";
|
||||
import sql from "../sql.js";
|
||||
import sqlInit from "../sql_init.js";
|
||||
import { CONTEXT_PROMPTS } from './llm_prompt_constants.js';
|
||||
|
||||
class IndexService {
|
||||
private initialized = false;
|
||||
@ -691,7 +692,7 @@ class IndexService {
|
||||
);
|
||||
|
||||
if (similarNotes.length === 0) {
|
||||
return "I'm an AI assistant helping with your Trilium notes. I couldn't find specific notes related to your query, but I'll try to assist based on general knowledge.";
|
||||
return CONTEXT_PROMPTS.INDEX_NO_NOTES_CONTEXT;
|
||||
}
|
||||
|
||||
// Build context from the similar notes
|
||||
|
98
src/services/llm/llm_prompt_constants.ts
Normal file
98
src/services/llm/llm_prompt_constants.ts
Normal file
@ -0,0 +1,98 @@
|
||||
/**
|
||||
* LLM Prompt Constants
|
||||
*
|
||||
* This file centralizes all LLM/AI prompts used throughout the application.
|
||||
* When adding new prompts, please add them here rather than hardcoding them in other files.
|
||||
*
|
||||
* Prompts are organized by their usage context (e.g., service, feature, etc.)
|
||||
*/
|
||||
|
||||
// Base system prompt used when no custom prompt is provided
|
||||
export const DEFAULT_SYSTEM_PROMPT =
|
||||
"You are a helpful assistant embedded in the Trilium Notes application. " +
|
||||
"You can help users with their notes, answer questions, and provide information. " +
|
||||
"Keep your responses concise and helpful. " +
|
||||
"You're currently chatting with the user about their notes.";
|
||||
|
||||
// Context-specific prompts
|
||||
export const CONTEXT_PROMPTS = {
|
||||
// Query enhancer prompt for generating better search terms
|
||||
QUERY_ENHANCER:
|
||||
`You are an AI assistant that decides what information needs to be retrieved from a user's knowledge base called TriliumNext Notes to answer the user's question.
|
||||
Given the user's question, generate 3-5 specific search queries that would help find relevant information.
|
||||
Each query should be focused on a different aspect of the question.
|
||||
Format your answer as a JSON array of strings, with each string being a search query.
|
||||
Example: ["exact topic mentioned", "related concept 1", "related concept 2"]`,
|
||||
|
||||
// Used to format notes context when providing responses
|
||||
CONTEXT_NOTES_WRAPPER:
|
||||
`I'll provide you with relevant information from my notes to help answer your question.
|
||||
|
||||
{noteContexts}
|
||||
|
||||
When referring to information from these notes in your response, please cite them by their titles (e.g., "According to your note on [Title]...") rather than using labels like "Note 1" or "Note 2".
|
||||
|
||||
Now, based on the above information, please answer: {query}`,
|
||||
|
||||
// Default fallback when no notes are found
|
||||
NO_NOTES_CONTEXT:
|
||||
"I am an AI assistant helping you with your Trilium notes. " +
|
||||
"I couldn't find any specific notes related to your query, but I'll try to assist you " +
|
||||
"with general knowledge about Trilium or other topics you're interested in.",
|
||||
|
||||
// Fallback when context building fails
|
||||
ERROR_FALLBACK_CONTEXT:
|
||||
"I'm your AI assistant helping with your Trilium notes. I'll try to answer based on what I know.",
|
||||
|
||||
// Headers for context (by provider)
|
||||
CONTEXT_HEADERS: {
|
||||
ANTHROPIC: (query: string) =>
|
||||
`I'm your AI assistant helping with your Trilium notes database. For your query: "${query}", I found these relevant notes:\n\n`,
|
||||
DEFAULT: (query: string) =>
|
||||
`I've found some relevant information in your notes that may help answer: "${query}"\n\n`
|
||||
},
|
||||
|
||||
// Closings for context (by provider)
|
||||
CONTEXT_CLOSINGS: {
|
||||
ANTHROPIC:
|
||||
"\n\nPlease use this information to answer the user's query. If the notes don't contain enough information, you can use your general knowledge as well.",
|
||||
DEFAULT:
|
||||
"\n\nBased on this information from the user's notes, please provide a helpful response."
|
||||
},
|
||||
|
||||
// Context for index service
|
||||
INDEX_NO_NOTES_CONTEXT:
|
||||
"I'm an AI assistant helping with your Trilium notes. I couldn't find specific notes related to your query, but I'll try to assist based on general knowledge."
|
||||
};
|
||||
|
||||
// Agent tool prompts
|
||||
export const AGENT_TOOL_PROMPTS = {
|
||||
// Prompts for query decomposition
|
||||
QUERY_DECOMPOSITION: {
|
||||
SUB_QUERY_DIRECT: 'Direct question that can be answered without decomposition',
|
||||
SUB_QUERY_GENERIC: 'Generic exploration to find related content',
|
||||
SUB_QUERY_ERROR: 'Error in decomposition, treating as simple query',
|
||||
SUB_QUERY_DIRECT_ANALYSIS: 'Direct analysis of note details',
|
||||
ORIGINAL_QUERY: 'Original query'
|
||||
},
|
||||
|
||||
// Prompts for contextual thinking tool
|
||||
CONTEXTUAL_THINKING: {
|
||||
STARTING_ANALYSIS: (query: string) => `Starting analysis of the query: "${query}"`,
|
||||
KEY_COMPONENTS: 'What are the key components of this query that need to be addressed?',
|
||||
BREAKING_DOWN: 'Breaking down the query to understand its requirements and context.'
|
||||
}
|
||||
};
|
||||
|
||||
// Provider-specific prompt modifiers
|
||||
export const PROVIDER_PROMPTS = {
|
||||
ANTHROPIC: {
|
||||
// Any Anthropic Claude-specific prompt modifications would go here
|
||||
},
|
||||
OPENAI: {
|
||||
// Any OpenAI-specific prompt modifications would go here
|
||||
},
|
||||
OLLAMA: {
|
||||
// Any Ollama-specific prompt modifications would go here
|
||||
}
|
||||
};
|
Loading…
x
Reference in New Issue
Block a user