mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-08-10 10:22:29 +08:00
adapt or regenerate embeddings - allows users to decide
This commit is contained in:
parent
5ad730c153
commit
84a8473beb
@ -340,6 +340,15 @@ export default class AiSettingsWidget extends OptionsWidget {
|
||||
<div class="form-text">${t("ai_llm.embedding_default_provider_description")}</div>
|
||||
</div>
|
||||
|
||||
<div class="form-group">
|
||||
<label>${t("ai_llm.embedding_dimension_strategy")}</label>
|
||||
<select class="embedding-dimension-strategy form-control">
|
||||
<option value="adapt">Adapt dimensions (faster)</option>
|
||||
<option value="regenerate">Regenerate embeddings (more accurate)</option>
|
||||
</select>
|
||||
<div class="form-text">${t("ai_llm.embedding_dimension_strategy_description") || "Choose how to handle different embedding dimensions between providers. 'Adapt' is faster but less accurate, 'Regenerate' is more accurate but requires API calls."}</div>
|
||||
</div>
|
||||
|
||||
<div class="form-group">
|
||||
<label>${t("ai_llm.embedding_provider_precedence")}</label>
|
||||
<input type="hidden" class="embedding-provider-precedence" value="">
|
||||
@ -812,6 +821,11 @@ export default class AiSettingsWidget extends OptionsWidget {
|
||||
await this.displayValidationWarnings();
|
||||
});
|
||||
|
||||
const $embeddingDimensionStrategy = this.$widget.find('.embedding-dimension-strategy');
|
||||
$embeddingDimensionStrategy.on('change', async () => {
|
||||
await this.updateOption('embeddingDimensionStrategy', $embeddingDimensionStrategy.val() as string);
|
||||
});
|
||||
|
||||
const $embeddingProviderPrecedence = this.$widget.find('.embedding-provider-precedence');
|
||||
$embeddingProviderPrecedence.on('change', async () => {
|
||||
await this.updateOption('embeddingProviderPrecedence', $embeddingProviderPrecedence.val() as string);
|
||||
@ -1151,7 +1165,8 @@ export default class AiSettingsWidget extends OptionsWidget {
|
||||
this.$widget.find('.embedding-similarity-threshold').val(options.embeddingSimilarityThreshold || '0.65');
|
||||
this.$widget.find('.max-notes-per-llm-query').val(options.maxNotesPerLlmQuery || '10');
|
||||
this.$widget.find('.embedding-default-provider').val(options.embeddingsDefaultProvider || 'openai');
|
||||
this.$widget.find('.embedding-provider-precedence').val(options.embeddingProviderPrecedence || 'openai,ollama,anthropic');
|
||||
this.$widget.find('.embedding-provider-precedence').val(options.embeddingProviderPrecedence || 'openai,ollama');
|
||||
this.$widget.find('.embedding-dimension-strategy').val(options.embeddingDimensionStrategy || 'adapt');
|
||||
this.$widget.find('.embedding-generation-location').val(options.embeddingGenerationLocation || 'client');
|
||||
this.$widget.find('.embedding-batch-size').val(options.embeddingBatchSize || '10');
|
||||
this.$widget.find('.embedding-update-interval').val(options.embeddingUpdateInterval || '5000');
|
||||
|
@ -106,7 +106,8 @@ const ALLOWED_OPTIONS = new Set([
|
||||
"embeddingSimilarityThreshold",
|
||||
"maxNotesPerLlmQuery",
|
||||
"enableAutomaticIndexing",
|
||||
"embeddingGenerationLocation"
|
||||
"embeddingGenerationLocation",
|
||||
"embeddingDimensionStrategy"
|
||||
]);
|
||||
|
||||
function getOptions() {
|
||||
|
@ -165,18 +165,25 @@ export async function findSimilarNotes(
|
||||
log.info(`Available embeddings: ${JSON.stringify(availableEmbeddings.map(e => ({
|
||||
providerId: e.providerId,
|
||||
modelId: e.modelId,
|
||||
count: e.count
|
||||
count: e.count,
|
||||
dimension: e.dimension
|
||||
})))}`);
|
||||
|
||||
// Import the AIServiceManager to get provider precedence
|
||||
const { default: aiManager } = await import('../ai_service_manager.js');
|
||||
|
||||
// Import vector utils for dimension adaptation
|
||||
const { adaptEmbeddingDimensions } = await import('./vector_utils.js');
|
||||
|
||||
// Get user dimension strategy preference
|
||||
const options = (await import('../../options.js')).default;
|
||||
const dimensionStrategy = await options.getOption('embeddingDimensionStrategy') || 'adapt';
|
||||
log.info(`Using embedding dimension strategy: ${dimensionStrategy}`);
|
||||
|
||||
// Get providers in user-defined precedence order
|
||||
// This uses the internal providerOrder property that's set from user preferences
|
||||
const availableProviderIds = availableEmbeddings.map(e => e.providerId);
|
||||
|
||||
// Get dedicated embedding provider precedence from options
|
||||
const options = (await import('../../options.js')).default;
|
||||
let preferredProviders: string[] = [];
|
||||
|
||||
const embeddingPrecedence = await options.getOption('embeddingProviderPrecedence');
|
||||
@ -215,53 +222,54 @@ export async function findSimilarNotes(
|
||||
const providerEmbeddings = availableEmbeddings.filter(e => e.providerId === provider);
|
||||
|
||||
if (providerEmbeddings.length > 0) {
|
||||
// Find models that match the current embedding's dimensions
|
||||
const dimensionMatchingModels = providerEmbeddings.filter(e => e.dimension === embedding.length);
|
||||
// Use the model with the most embeddings
|
||||
const bestModel = providerEmbeddings.sort((a, b) => b.count - a.count)[0];
|
||||
log.info(`Found fallback provider: ${provider}, model: ${bestModel.modelId}, dimension: ${bestModel.dimension}`);
|
||||
|
||||
// If we have models with matching dimensions, use the one with most embeddings
|
||||
if (dimensionMatchingModels.length > 0) {
|
||||
const bestModel = dimensionMatchingModels.sort((a, b) => b.count - a.count)[0];
|
||||
log.info(`Found fallback provider with matching dimensions (${embedding.length}): ${provider}, model: ${bestModel.modelId}`);
|
||||
if (dimensionStrategy === 'adapt') {
|
||||
// Dimension adaptation strategy (simple truncation/padding)
|
||||
const adaptedEmbedding = adaptEmbeddingDimensions(embedding, bestModel.dimension);
|
||||
log.info(`Adapted query embedding from dimension ${embedding.length} to ${adaptedEmbedding.length}`);
|
||||
|
||||
// Recursive call with the new provider/model, but disable further fallbacks
|
||||
// Use the adapted embedding with the fallback provider
|
||||
return findSimilarNotes(
|
||||
embedding,
|
||||
adaptedEmbedding,
|
||||
provider,
|
||||
bestModel.modelId,
|
||||
limit,
|
||||
threshold,
|
||||
false // Prevent infinite recursion
|
||||
);
|
||||
} else {
|
||||
// We need to regenerate embeddings with the new provider
|
||||
log.info(`No models with matching dimensions found for ${provider}. Available models: ${JSON.stringify(
|
||||
providerEmbeddings.map(e => ({ model: e.modelId, dimension: e.dimension }))
|
||||
)}`);
|
||||
|
||||
}
|
||||
else if (dimensionStrategy === 'regenerate') {
|
||||
// Regeneration strategy (regenerate embedding with fallback provider)
|
||||
try {
|
||||
// Import provider manager to get a provider instance
|
||||
const { default: providerManager } = await import('./providers.js');
|
||||
const providerInstance = providerManager.getEmbeddingProvider(provider);
|
||||
|
||||
if (providerInstance) {
|
||||
// Use the model with the most embeddings
|
||||
const bestModel = providerEmbeddings.sort((a, b) => b.count - a.count)[0];
|
||||
// Configure the model by setting it in the config
|
||||
try {
|
||||
// Access the config safely through the getConfig method
|
||||
// Try to get the original query text
|
||||
// This is a challenge - ideally we would have the original query
|
||||
// For now, we'll use a global cache to store recent queries
|
||||
interface CustomGlobal {
|
||||
recentEmbeddingQueries?: Record<string, string>;
|
||||
}
|
||||
const globalWithCache = global as unknown as CustomGlobal;
|
||||
const recentQueries = globalWithCache.recentEmbeddingQueries || {};
|
||||
const embeddingKey = embedding.toString().substring(0, 100);
|
||||
const originalQuery = recentQueries[embeddingKey];
|
||||
|
||||
if (originalQuery) {
|
||||
log.info(`Found original query "${originalQuery}" for regeneration with ${provider}`);
|
||||
|
||||
// Configure the model
|
||||
const config = providerInstance.getConfig();
|
||||
config.model = bestModel.modelId;
|
||||
|
||||
log.info(`Trying to convert query to ${provider}/${bestModel.modelId} embedding format (dimension: ${bestModel.dimension})`);
|
||||
|
||||
// Get the original query from the embedding cache if possible, or use a placeholder
|
||||
// This is a hack - ideally we'd pass the query text through the whole chain
|
||||
const originalQuery = "query"; // This is a placeholder, we'd need the original query text
|
||||
|
||||
// Generate a new embedding with the fallback provider
|
||||
const newEmbedding = await providerInstance.generateEmbeddings(originalQuery);
|
||||
|
||||
log.info(`Successfully generated new embedding with provider ${provider}/${bestModel.modelId} (dimension: ${newEmbedding.length})`);
|
||||
log.info(`Successfully regenerated embedding with provider ${provider}/${bestModel.modelId} (dimension: ${newEmbedding.length})`);
|
||||
|
||||
// Now try finding similar notes with the new embedding
|
||||
return findSimilarNotes(
|
||||
@ -272,18 +280,38 @@ export async function findSimilarNotes(
|
||||
threshold,
|
||||
false // Prevent infinite recursion
|
||||
);
|
||||
} catch (configErr: any) {
|
||||
log.error(`Error configuring provider ${provider}: ${configErr.message}`);
|
||||
} else {
|
||||
log.info(`Original query not found for regeneration, falling back to adaptation`);
|
||||
// Fall back to adaptation if we can't find the original query
|
||||
const adaptedEmbedding = adaptEmbeddingDimensions(embedding, bestModel.dimension);
|
||||
return findSimilarNotes(
|
||||
adaptedEmbedding,
|
||||
provider,
|
||||
bestModel.modelId,
|
||||
limit,
|
||||
threshold,
|
||||
false
|
||||
);
|
||||
}
|
||||
}
|
||||
} catch (err: any) {
|
||||
log.error(`Error converting embedding format: ${err.message}`);
|
||||
log.error(`Error regenerating embedding: ${err.message}`);
|
||||
// Fall back to adaptation on error
|
||||
const adaptedEmbedding = adaptEmbeddingDimensions(embedding, bestModel.dimension);
|
||||
return findSimilarNotes(
|
||||
adaptedEmbedding,
|
||||
provider,
|
||||
bestModel.modelId,
|
||||
limit,
|
||||
threshold,
|
||||
false
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.error(`No suitable fallback providers found with compatible dimensions. Current embedding dimension: ${embedding.length}`);
|
||||
log.error(`No suitable fallback providers found. Current embedding dimension: ${embedding.length}`);
|
||||
log.info(`Available embeddings: ${JSON.stringify(availableEmbeddings.map(e => ({
|
||||
providerId: e.providerId,
|
||||
modelId: e.modelId,
|
||||
@ -307,13 +335,8 @@ export async function findSimilarNotes(
|
||||
const rowData = row as any;
|
||||
const rowEmbedding = bufferToEmbedding(rowData.embedding, rowData.dimension);
|
||||
|
||||
// Check if dimensions match before calculating similarity
|
||||
if (rowEmbedding.length !== embedding.length) {
|
||||
log.info(`Skipping embedding ${rowData.embedId} - dimension mismatch: ${rowEmbedding.length} vs ${embedding.length}`);
|
||||
continue;
|
||||
}
|
||||
|
||||
try {
|
||||
// cosineSimilarity will automatically adapt dimensions if needed
|
||||
const similarity = cosineSimilarity(embedding, rowEmbedding);
|
||||
similarities.push({
|
||||
noteId: rowData.noteId,
|
||||
|
@ -1,9 +1,11 @@
|
||||
/**
|
||||
* Computes the cosine similarity between two vectors
|
||||
* If dimensions don't match, automatically adapts the first vector to match the second
|
||||
*/
|
||||
export function cosineSimilarity(a: Float32Array, b: Float32Array): number {
|
||||
// If dimensions don't match, adapt 'a' to match 'b'
|
||||
if (a.length !== b.length) {
|
||||
throw new Error(`Vector dimensions don't match: ${a.length} vs ${b.length}`);
|
||||
a = adaptEmbeddingDimensions(a, b.length);
|
||||
}
|
||||
|
||||
let dotProduct = 0;
|
||||
@ -26,6 +28,52 @@ export function cosineSimilarity(a: Float32Array, b: Float32Array): number {
|
||||
return dotProduct / (aMagnitude * bMagnitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adapts an embedding to match target dimensions
|
||||
* Uses a simple truncation (if source is larger) or zero-padding (if source is smaller)
|
||||
*
|
||||
* @param sourceEmbedding The original embedding
|
||||
* @param targetDimension The desired dimension
|
||||
* @returns A new embedding with the target dimensions
|
||||
*/
|
||||
export function adaptEmbeddingDimensions(sourceEmbedding: Float32Array, targetDimension: number): Float32Array {
|
||||
const sourceDimension = sourceEmbedding.length;
|
||||
|
||||
// If dimensions already match, return the original
|
||||
if (sourceDimension === targetDimension) {
|
||||
return sourceEmbedding;
|
||||
}
|
||||
|
||||
// Create a new embedding with target dimensions
|
||||
const adaptedEmbedding = new Float32Array(targetDimension);
|
||||
|
||||
if (sourceDimension < targetDimension) {
|
||||
// If source is smaller, copy all values and pad with zeros
|
||||
adaptedEmbedding.set(sourceEmbedding);
|
||||
// Rest of the array is already initialized to zeros
|
||||
} else {
|
||||
// If source is larger, truncate to target dimension
|
||||
for (let i = 0; i < targetDimension; i++) {
|
||||
adaptedEmbedding[i] = sourceEmbedding[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize the adapted embedding to maintain unit length
|
||||
let magnitude = 0;
|
||||
for (let i = 0; i < targetDimension; i++) {
|
||||
magnitude += adaptedEmbedding[i] * adaptedEmbedding[i];
|
||||
}
|
||||
|
||||
magnitude = Math.sqrt(magnitude);
|
||||
if (magnitude > 0) {
|
||||
for (let i = 0; i < targetDimension; i++) {
|
||||
adaptedEmbedding[i] /= magnitude;
|
||||
}
|
||||
}
|
||||
|
||||
return adaptedEmbedding;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts embedding Float32Array to Buffer for storage in SQLite
|
||||
*/
|
||||
|
@ -543,6 +543,27 @@ class IndexService {
|
||||
const embedding = await provider.generateEmbeddings(query);
|
||||
log.info(`Generated embedding for query: "${query}" (${embedding.length} dimensions)`);
|
||||
|
||||
// Store query text in a global cache for possible regeneration with different providers
|
||||
// Use a type declaration to avoid TypeScript errors
|
||||
interface CustomGlobal {
|
||||
recentEmbeddingQueries?: Record<string, string>;
|
||||
}
|
||||
const globalWithCache = global as unknown as CustomGlobal;
|
||||
|
||||
if (!globalWithCache.recentEmbeddingQueries) {
|
||||
globalWithCache.recentEmbeddingQueries = {};
|
||||
}
|
||||
|
||||
// Use a substring of the embedding as a key (full embedding is too large)
|
||||
const embeddingKey = embedding.toString().substring(0, 100);
|
||||
globalWithCache.recentEmbeddingQueries[embeddingKey] = query;
|
||||
|
||||
// Limit cache size to prevent memory leaks (keep max 50 recent queries)
|
||||
const keys = Object.keys(globalWithCache.recentEmbeddingQueries);
|
||||
if (keys.length > 50) {
|
||||
delete globalWithCache.recentEmbeddingQueries[keys[0]];
|
||||
}
|
||||
|
||||
// Get Note IDs to search, optionally filtered by branch
|
||||
let similarNotes = [];
|
||||
|
||||
|
@ -189,7 +189,8 @@ const defaultOptions: DefaultOption[] = [
|
||||
{ name: "aiSystemPrompt", value: "", isSynced: true },
|
||||
{ name: "aiProviderPrecedence", value: "openai,anthropic,ollama", isSynced: true },
|
||||
{ name: "embeddingsDefaultProvider", value: "openai", isSynced: true },
|
||||
{ name: "embeddingProviderPrecedence", value: "openai,ollama,anthropic", isSynced: true },
|
||||
{ name: "embeddingProviderPrecedence", value: "openai,ollama", isSynced: true },
|
||||
{ name: "embeddingDimensionStrategy", value: "adapt", isSynced: true },
|
||||
{ name: "enableAutomaticIndexing", value: "true", isSynced: true },
|
||||
{ name: "embeddingSimilarityThreshold", value: "0.65", isSynced: true },
|
||||
{ name: "maxNotesPerLlmQuery", value: "10", isSynced: true },
|
||||
|
@ -77,6 +77,7 @@ export interface OptionDefinitions extends KeyboardShortcutsOptions<KeyboardActi
|
||||
embeddingSimilarityThreshold: string;
|
||||
maxNotesPerLlmQuery: string;
|
||||
embeddingGenerationLocation: string;
|
||||
embeddingDimensionStrategy: string; // 'adapt' or 'regenerate'
|
||||
|
||||
lastSyncedPull: number;
|
||||
lastSyncedPush: number;
|
||||
|
Loading…
x
Reference in New Issue
Block a user