mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-07-29 19:12:27 +08:00
break up large vector_store into smaller files
This commit is contained in:
parent
fc5599575c
commit
72b1426d94
@ -1,5 +1,5 @@
|
||||
import options from "../../services/options.js";
|
||||
import vectorStore from "../../services/llm/embeddings/vector_store.js";
|
||||
import vectorStore from "../../services/llm/embeddings/index.js";
|
||||
import providerManager from "../../services/llm/embeddings/providers.js";
|
||||
import indexService from "../../services/llm/index_service.js";
|
||||
import becca from "../../becca/becca.js";
|
||||
|
@ -4,7 +4,7 @@ import options from "../../services/options.js";
|
||||
// @ts-ignore
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
import becca from "../../becca/becca.js";
|
||||
import vectorStore from "../../services/llm/embeddings/vector_store.js";
|
||||
import vectorStore from "../../services/llm/embeddings/index.js";
|
||||
import providerManager from "../../services/llm/embeddings/providers.js";
|
||||
import type { Message, ChatCompletionOptions } from "../../services/llm/ai_interface.js";
|
||||
// Import this way to prevent immediate instantiation
|
||||
@ -914,7 +914,7 @@ async function startIndexing(req: Request, res: Response) {
|
||||
}
|
||||
|
||||
const { force, batchSize } = req.body || {};
|
||||
|
||||
|
||||
let result;
|
||||
if (batchSize) {
|
||||
// Run a limited batch indexing
|
||||
@ -948,7 +948,7 @@ async function getFailedIndexes(req: Request, res: Response) {
|
||||
|
||||
const limit = req.query.limit ? parseInt(req.query.limit as string, 10) : 100;
|
||||
const failedNotes = await indexService.getFailedIndexes(limit);
|
||||
|
||||
|
||||
return {
|
||||
count: failedNotes.length,
|
||||
failedNotes
|
||||
@ -974,7 +974,7 @@ async function retryFailedIndex(req: Request, res: Response) {
|
||||
}
|
||||
|
||||
const success = await indexService.retryFailedNote(noteId);
|
||||
|
||||
|
||||
return {
|
||||
success,
|
||||
message: success ? `Note ${noteId} queued for retry` : `Note ${noteId} not found in failed queue`
|
||||
@ -995,7 +995,7 @@ async function retryAllFailedIndexes(req: Request, res: Response) {
|
||||
}
|
||||
|
||||
const count = await indexService.retryAllFailedNotes();
|
||||
|
||||
|
||||
return {
|
||||
success: true,
|
||||
count,
|
||||
@ -1017,7 +1017,7 @@ async function findSimilarNotes(req: Request, res: Response) {
|
||||
}
|
||||
|
||||
const { query, contextNoteId, limit } = req.body || {};
|
||||
|
||||
|
||||
if (!query || typeof query !== 'string' || query.trim().length === 0) {
|
||||
throw new Error('Query is required');
|
||||
}
|
||||
@ -1027,7 +1027,7 @@ async function findSimilarNotes(req: Request, res: Response) {
|
||||
contextNoteId,
|
||||
limit || 10
|
||||
);
|
||||
|
||||
|
||||
return {
|
||||
count: similarNotes.length,
|
||||
similarNotes
|
||||
@ -1048,7 +1048,7 @@ async function generateQueryContext(req: Request, res: Response) {
|
||||
}
|
||||
|
||||
const { query, contextNoteId, depth } = req.body || {};
|
||||
|
||||
|
||||
if (!query || typeof query !== 'string' || query.trim().length === 0) {
|
||||
throw new Error('Query is required');
|
||||
}
|
||||
@ -1058,7 +1058,7 @@ async function generateQueryContext(req: Request, res: Response) {
|
||||
contextNoteId,
|
||||
depth || 2
|
||||
);
|
||||
|
||||
|
||||
return {
|
||||
context,
|
||||
length: context.length
|
||||
@ -1090,7 +1090,7 @@ async function indexNote(req: Request, res: Response) {
|
||||
}
|
||||
|
||||
const success = await indexService.generateNoteIndex(noteId);
|
||||
|
||||
|
||||
return {
|
||||
success,
|
||||
noteId,
|
||||
@ -1111,7 +1111,7 @@ export default {
|
||||
listSessions,
|
||||
deleteSession,
|
||||
sendMessage,
|
||||
|
||||
|
||||
// Knowledge base index management
|
||||
getIndexStats,
|
||||
startIndexing,
|
||||
|
192
src/services/llm/embeddings/chunking.ts
Normal file
192
src/services/llm/embeddings/chunking.ts
Normal file
@ -0,0 +1,192 @@
|
||||
import log from "../../../services/log.js";
|
||||
import dateUtils from "../../../services/date_utils.js";
|
||||
import sql from "../../../services/sql.js";
|
||||
import becca from "../../../becca/becca.js";
|
||||
import type { NoteEmbeddingContext } from "./types.js";
|
||||
// Remove static imports that cause circular dependencies
|
||||
// import { storeNoteEmbedding, deleteNoteEmbeddings } from "./storage.js";
|
||||
|
||||
/**
|
||||
* Process a large note by breaking it into chunks and creating embeddings for each chunk
|
||||
* This provides more detailed and focused embeddings for different parts of large notes
|
||||
*
|
||||
* @param noteId - The ID of the note to process
|
||||
* @param provider - The embedding provider to use
|
||||
* @param context - The note context data
|
||||
*/
|
||||
export async function processNoteWithChunking(
|
||||
noteId: string,
|
||||
provider: any,
|
||||
context: NoteEmbeddingContext
|
||||
): Promise<void> {
|
||||
try {
|
||||
// Get the context extractor dynamically to avoid circular dependencies
|
||||
const { ContextExtractor } = await import('../context/index.js');
|
||||
const contextExtractor = new ContextExtractor();
|
||||
|
||||
// Get note from becca
|
||||
const note = becca.notes[noteId];
|
||||
if (!note) {
|
||||
throw new Error(`Note ${noteId} not found in Becca cache`);
|
||||
}
|
||||
|
||||
// Use semantic chunking for better boundaries
|
||||
const chunks = await contextExtractor.semanticChunking(
|
||||
context.content,
|
||||
note.title,
|
||||
noteId,
|
||||
{
|
||||
// Adjust chunk size based on provider using constants
|
||||
maxChunkSize: provider.name === 'ollama' ?
|
||||
(await import('../../../routes/api/llm.js')).LLM_CONSTANTS.CHUNKING.OLLAMA_SIZE :
|
||||
(await import('../../../routes/api/llm.js')).LLM_CONSTANTS.CHUNKING.DEFAULT_SIZE,
|
||||
respectBoundaries: true
|
||||
}
|
||||
);
|
||||
|
||||
if (!chunks || chunks.length === 0) {
|
||||
// Fall back to single embedding if chunking fails
|
||||
const embedding = await provider.generateEmbeddings(context.content);
|
||||
const config = provider.getConfig();
|
||||
|
||||
// Use dynamic import instead of static import
|
||||
const storage = await import('./storage.js');
|
||||
await storage.storeNoteEmbedding(noteId, provider.name, config.model, embedding);
|
||||
|
||||
log.info(`Generated single embedding for note ${noteId} (${note.title}) since chunking failed`);
|
||||
return;
|
||||
}
|
||||
|
||||
// Generate and store embeddings for each chunk
|
||||
const config = provider.getConfig();
|
||||
|
||||
// Delete existing embeddings first to avoid duplicates
|
||||
// Use dynamic import
|
||||
const storage = await import('./storage.js');
|
||||
await storage.deleteNoteEmbeddings(noteId, provider.name, config.model);
|
||||
|
||||
// Track successful and failed chunks in memory during this processing run
|
||||
let successfulChunks = 0;
|
||||
let failedChunks = 0;
|
||||
const totalChunks = chunks.length;
|
||||
const failedChunkDetails: {index: number, error: string}[] = [];
|
||||
const retryQueue: {index: number, chunk: any}[] = [];
|
||||
|
||||
log.info(`Processing ${chunks.length} chunks for note ${noteId} (${note.title})`);
|
||||
|
||||
// Process each chunk with a delay based on provider to avoid rate limits
|
||||
for (let i = 0; i < chunks.length; i++) {
|
||||
const chunk = chunks[i];
|
||||
try {
|
||||
// Generate embedding for this chunk's content
|
||||
const embedding = await provider.generateEmbeddings(chunk.content);
|
||||
|
||||
// Store with chunk information in a unique ID format
|
||||
const chunkIdSuffix = `${i + 1}_of_${chunks.length}`;
|
||||
await storage.storeNoteEmbedding(
|
||||
noteId,
|
||||
provider.name,
|
||||
config.model,
|
||||
embedding
|
||||
);
|
||||
|
||||
successfulChunks++;
|
||||
|
||||
// Small delay between chunks to avoid rate limits - longer for Ollama
|
||||
if (i < chunks.length - 1) {
|
||||
await new Promise(resolve => setTimeout(resolve,
|
||||
provider.name === 'ollama' ? 500 : 100));
|
||||
}
|
||||
} catch (error: any) {
|
||||
// Track the failure for this specific chunk
|
||||
failedChunks++;
|
||||
failedChunkDetails.push({
|
||||
index: i + 1,
|
||||
error: error.message || 'Unknown error'
|
||||
});
|
||||
|
||||
// Add to retry queue
|
||||
retryQueue.push({
|
||||
index: i,
|
||||
chunk: chunk
|
||||
});
|
||||
|
||||
log.error(`Error processing chunk ${i + 1} for note ${noteId}: ${error.message || 'Unknown error'}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Retry failed chunks with exponential backoff
|
||||
if (retryQueue.length > 0 && retryQueue.length < chunks.length) {
|
||||
log.info(`Retrying ${retryQueue.length} failed chunks for note ${noteId}`);
|
||||
|
||||
for (let j = 0; j < retryQueue.length; j++) {
|
||||
const {index, chunk} = retryQueue[j];
|
||||
|
||||
try {
|
||||
// Wait longer for retries with exponential backoff
|
||||
await new Promise(resolve => setTimeout(resolve, 1000 * Math.pow(1.5, j)));
|
||||
|
||||
// Retry the embedding
|
||||
const embedding = await provider.generateEmbeddings(chunk.content);
|
||||
|
||||
// Store with unique ID that indicates it was a retry
|
||||
const chunkIdSuffix = `${index + 1}_of_${chunks.length}`;
|
||||
await storage.storeNoteEmbedding(
|
||||
noteId,
|
||||
provider.name,
|
||||
config.model,
|
||||
embedding
|
||||
);
|
||||
|
||||
// Update counters
|
||||
successfulChunks++;
|
||||
failedChunks--;
|
||||
|
||||
// Remove from failedChunkDetails
|
||||
const detailIndex = failedChunkDetails.findIndex(d => d.index === index + 1);
|
||||
if (detailIndex >= 0) {
|
||||
failedChunkDetails.splice(detailIndex, 1);
|
||||
}
|
||||
} catch (error: any) {
|
||||
log.error(`Retry failed for chunk ${index + 1} of note ${noteId}: ${error.message || 'Unknown error'}`);
|
||||
// Keep failure count as is
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Log information about the processed chunks
|
||||
if (successfulChunks > 0) {
|
||||
log.info(`Generated ${successfulChunks} chunk embeddings for note ${noteId} (${note.title})`);
|
||||
}
|
||||
|
||||
if (failedChunks > 0) {
|
||||
log.info(`Failed to generate ${failedChunks} chunk embeddings for note ${noteId} (${note.title})`);
|
||||
}
|
||||
|
||||
// If no chunks were successfully processed, throw an error
|
||||
// This will keep the note in the queue for another attempt
|
||||
if (successfulChunks === 0 && failedChunks > 0) {
|
||||
throw new Error(`All ${failedChunks} chunks failed for note ${noteId}. First error: ${failedChunkDetails[0]?.error}`);
|
||||
}
|
||||
|
||||
// If some chunks failed but others succeeded, log a warning but consider the processing complete
|
||||
// The note will be removed from the queue, but we'll store error information
|
||||
if (failedChunks > 0 && successfulChunks > 0) {
|
||||
const errorSummary = `Note processed partially: ${successfulChunks}/${totalChunks} chunks succeeded, ${failedChunks}/${totalChunks} failed`;
|
||||
log.info(errorSummary);
|
||||
|
||||
// Store a summary in the error field of embedding_queue
|
||||
// This is just for informational purposes - the note will be removed from the queue
|
||||
const now = dateUtils.utcNowDateTime();
|
||||
await sql.execute(`
|
||||
UPDATE embedding_queue
|
||||
SET error = ?, lastAttempt = ?
|
||||
WHERE noteId = ?
|
||||
`, [errorSummary, now, noteId]);
|
||||
}
|
||||
|
||||
} catch (error: any) {
|
||||
log.error(`Error in chunked embedding process for note ${noteId}: ${error.message || 'Unknown error'}`);
|
||||
throw error;
|
||||
}
|
||||
}
|
24
src/services/llm/embeddings/chunking_interface.ts
Normal file
24
src/services/llm/embeddings/chunking_interface.ts
Normal file
@ -0,0 +1,24 @@
|
||||
import type { NoteEmbeddingContext } from "./types.js";
|
||||
|
||||
/**
|
||||
* Interface for chunking operations
|
||||
*/
|
||||
export interface ChunkingOperations {
|
||||
/**
|
||||
* Process a large note by breaking it into chunks and creating embeddings for each chunk
|
||||
*/
|
||||
processNoteWithChunking(
|
||||
noteId: string,
|
||||
provider: any,
|
||||
context: NoteEmbeddingContext
|
||||
): Promise<void>;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the chunking operations instance
|
||||
* This function is implemented to break circular dependencies
|
||||
*/
|
||||
export async function getChunkingOperations(): Promise<ChunkingOperations> {
|
||||
const chunking = await import('./chunking.js');
|
||||
return chunking;
|
||||
}
|
327
src/services/llm/embeddings/content_processing.ts
Normal file
327
src/services/llm/embeddings/content_processing.ts
Normal file
@ -0,0 +1,327 @@
|
||||
import becca from "../../../becca/becca.js";
|
||||
import type { NoteEmbeddingContext } from "./types.js";
|
||||
import sanitizeHtml from "sanitize-html";
|
||||
import type BNote from "../../../becca/entities/bnote.js";
|
||||
|
||||
/**
|
||||
* Clean note content by removing HTML tags and normalizing whitespace
|
||||
*/
|
||||
export async function cleanNoteContent(content: string, type: string, mime: string): Promise<string> {
|
||||
if (!content) return '';
|
||||
|
||||
// If it's HTML content, remove HTML tags
|
||||
if ((type === 'text' && mime === 'text/html') || content.includes('<div>') || content.includes('<p>')) {
|
||||
// Use sanitizeHtml to remove all HTML tags
|
||||
content = sanitizeHtml(content, {
|
||||
allowedTags: [],
|
||||
allowedAttributes: {},
|
||||
textFilter: (text) => {
|
||||
// Normalize the text, removing excessive whitespace
|
||||
return text.replace(/\s+/g, ' ');
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Additional cleanup for any remaining HTML entities
|
||||
content = content
|
||||
.replace(/ /g, ' ')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>')
|
||||
.replace(/&/g, '&')
|
||||
.replace(/"/g, '"')
|
||||
.replace(/'/g, "'");
|
||||
|
||||
// Normalize whitespace (replace multiple spaces/newlines with single space)
|
||||
content = content.replace(/\s+/g, ' ');
|
||||
|
||||
// Trim the content
|
||||
content = content.trim();
|
||||
|
||||
// Import constants dynamically to avoid circular dependencies
|
||||
const { LLM_CONSTANTS } = await import('../../../routes/api/llm.js');
|
||||
// Truncate if extremely long
|
||||
if (content.length > LLM_CONSTANTS.CONTENT.MAX_TOTAL_CONTENT_LENGTH) {
|
||||
content = content.substring(0, LLM_CONSTANTS.CONTENT.MAX_TOTAL_CONTENT_LENGTH) + ' [content truncated]';
|
||||
}
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract content from different note types
|
||||
*/
|
||||
export function extractStructuredContent(content: string, type: string, mime: string): string {
|
||||
try {
|
||||
if (!content) return '';
|
||||
|
||||
// Special handling based on note type
|
||||
switch (type) {
|
||||
case 'mindMap':
|
||||
case 'relationMap':
|
||||
case 'canvas':
|
||||
if (mime === 'application/json') {
|
||||
const jsonContent = JSON.parse(content);
|
||||
|
||||
if (type === 'canvas') {
|
||||
// Extract text elements from canvas
|
||||
if (jsonContent.elements && Array.isArray(jsonContent.elements)) {
|
||||
const texts = jsonContent.elements
|
||||
.filter((element: any) => element.type === 'text' && element.text)
|
||||
.map((element: any) => element.text);
|
||||
return texts.join('\n');
|
||||
}
|
||||
}
|
||||
else if (type === 'mindMap') {
|
||||
// Extract node text from mind map
|
||||
const extractMindMapNodes = (node: any): string[] => {
|
||||
let texts: string[] = [];
|
||||
if (node.text) {
|
||||
texts.push(node.text);
|
||||
}
|
||||
if (node.children && Array.isArray(node.children)) {
|
||||
for (const child of node.children) {
|
||||
texts = texts.concat(extractMindMapNodes(child));
|
||||
}
|
||||
}
|
||||
return texts;
|
||||
};
|
||||
|
||||
if (jsonContent.root) {
|
||||
return extractMindMapNodes(jsonContent.root).join('\n');
|
||||
}
|
||||
}
|
||||
else if (type === 'relationMap') {
|
||||
// Extract relation map entities and connections
|
||||
let result = '';
|
||||
|
||||
if (jsonContent.notes && Array.isArray(jsonContent.notes)) {
|
||||
result += 'Notes: ' + jsonContent.notes
|
||||
.map((note: any) => note.title || note.name)
|
||||
.filter(Boolean)
|
||||
.join(', ') + '\n';
|
||||
}
|
||||
|
||||
if (jsonContent.relations && Array.isArray(jsonContent.relations)) {
|
||||
result += 'Relations: ' + jsonContent.relations
|
||||
.map((rel: any) => {
|
||||
const sourceNote = jsonContent.notes.find((n: any) => n.noteId === rel.sourceNoteId);
|
||||
const targetNote = jsonContent.notes.find((n: any) => n.noteId === rel.targetNoteId);
|
||||
const source = sourceNote ? (sourceNote.title || sourceNote.name) : 'unknown';
|
||||
const target = targetNote ? (targetNote.title || targetNote.name) : 'unknown';
|
||||
return `${source} → ${rel.name || ''} → ${target}`;
|
||||
})
|
||||
.join('; ');
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
return JSON.stringify(content);
|
||||
|
||||
case 'mermaid':
|
||||
// Return mermaid diagrams as-is (they're human-readable)
|
||||
return content;
|
||||
|
||||
case 'geoMap':
|
||||
if (mime === 'application/json') {
|
||||
const jsonContent = JSON.parse(content);
|
||||
let result = '';
|
||||
|
||||
if (jsonContent.markers && Array.isArray(jsonContent.markers)) {
|
||||
result += jsonContent.markers
|
||||
.map((marker: any) => {
|
||||
return `Location: ${marker.title || ''} (${marker.lat}, ${marker.lng})${marker.description ? ' - ' + marker.description : ''}`;
|
||||
})
|
||||
.join('\n');
|
||||
}
|
||||
|
||||
return result || JSON.stringify(content);
|
||||
}
|
||||
return JSON.stringify(content);
|
||||
|
||||
case 'file':
|
||||
case 'image':
|
||||
// For files and images, just return a placeholder
|
||||
return `[${type} attachment]`;
|
||||
|
||||
default:
|
||||
return content;
|
||||
}
|
||||
}
|
||||
catch (error) {
|
||||
console.error(`Error extracting content from ${type} note:`, error);
|
||||
return content;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets context for a note to be embedded
|
||||
*/
|
||||
export async function getNoteEmbeddingContext(noteId: string): Promise<NoteEmbeddingContext> {
|
||||
const note = becca.getNote(noteId);
|
||||
|
||||
if (!note) {
|
||||
throw new Error(`Note ${noteId} not found`);
|
||||
}
|
||||
|
||||
// Get parent note titles
|
||||
const parentNotes = note.getParentNotes();
|
||||
const parentTitles = parentNotes.map(note => note.title);
|
||||
|
||||
// Get child note titles
|
||||
const childNotes = note.getChildNotes();
|
||||
const childTitles = childNotes.map(note => note.title);
|
||||
|
||||
// Get all attributes (not just owned ones)
|
||||
const attributes = note.getAttributes().map(attr => ({
|
||||
type: attr.type,
|
||||
name: attr.name,
|
||||
value: attr.value
|
||||
}));
|
||||
|
||||
// Get backlinks (notes that reference this note through relations)
|
||||
const targetRelations = note.getTargetRelations();
|
||||
const backlinks = targetRelations
|
||||
.map(relation => {
|
||||
const sourceNote = relation.getNote();
|
||||
if (sourceNote && sourceNote.type !== 'search') { // Filter out search notes
|
||||
return {
|
||||
sourceNoteId: sourceNote.noteId,
|
||||
sourceTitle: sourceNote.title,
|
||||
relationName: relation.name
|
||||
};
|
||||
}
|
||||
return null;
|
||||
})
|
||||
.filter((item): item is { sourceNoteId: string; sourceTitle: string; relationName: string } => item !== null);
|
||||
|
||||
// Get related notes through relations
|
||||
const relations = note.getRelations();
|
||||
const relatedNotes = relations
|
||||
.map(relation => {
|
||||
const targetNote = relation.targetNote;
|
||||
if (targetNote) {
|
||||
return {
|
||||
targetNoteId: targetNote.noteId,
|
||||
targetTitle: targetNote.title,
|
||||
relationName: relation.name
|
||||
};
|
||||
}
|
||||
return null;
|
||||
})
|
||||
.filter((item): item is { targetNoteId: string; targetTitle: string; relationName: string } => item !== null);
|
||||
|
||||
// Extract important labels that might affect semantics
|
||||
const labelValues: Record<string, string> = {};
|
||||
const labels = note.getLabels();
|
||||
for (const label of labels) {
|
||||
// Skip CSS and UI-related labels that don't affect semantics
|
||||
if (!label.name.startsWith('css') &&
|
||||
!label.name.startsWith('workspace') &&
|
||||
!label.name.startsWith('hide') &&
|
||||
!label.name.startsWith('collapsed')) {
|
||||
labelValues[label.name] = label.value;
|
||||
}
|
||||
}
|
||||
|
||||
// Get attachments
|
||||
const attachments = note.getAttachments().map(att => ({
|
||||
title: att.title,
|
||||
mime: att.mime
|
||||
}));
|
||||
|
||||
// Get content
|
||||
let content = "";
|
||||
|
||||
try {
|
||||
// Use the enhanced context extractor for improved content extraction
|
||||
// We're using a dynamic import to avoid circular dependencies
|
||||
const { ContextExtractor } = await import('../../llm/context/index.js');
|
||||
const contextExtractor = new ContextExtractor();
|
||||
|
||||
// Get the content using the enhanced formatNoteContent method in context extractor
|
||||
const noteContent = await contextExtractor.getNoteContent(noteId);
|
||||
|
||||
if (noteContent) {
|
||||
content = noteContent;
|
||||
|
||||
// For large content, consider chunking or summarization
|
||||
if (content.length > 10000) {
|
||||
// Large content handling options:
|
||||
|
||||
// Option 1: Use our summarization feature
|
||||
const summary = await contextExtractor.getNoteSummary(noteId);
|
||||
if (summary) {
|
||||
content = summary;
|
||||
}
|
||||
|
||||
// Option 2: Alternative approach - use the first chunk if summarization fails
|
||||
if (content.length > 10000) {
|
||||
const chunks = await contextExtractor.getChunkedNoteContent(noteId);
|
||||
if (chunks && chunks.length > 0) {
|
||||
// Use the first chunk (most relevant/beginning)
|
||||
content = chunks[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Fallback to original method if context extractor fails
|
||||
const rawContent = String(await note.getContent() || "");
|
||||
|
||||
// Process the content based on note type to extract meaningful text
|
||||
if (note.type === 'text' || note.type === 'code') {
|
||||
content = rawContent;
|
||||
} else if (['canvas', 'mindMap', 'relationMap', 'mermaid', 'geoMap'].includes(note.type)) {
|
||||
// Process structured content types
|
||||
content = extractStructuredContent(rawContent, note.type, note.mime);
|
||||
} else if (note.type === 'image' || note.type === 'file') {
|
||||
content = `[${note.type} attachment: ${note.mime}]`;
|
||||
}
|
||||
|
||||
// Clean the content to remove HTML tags and normalize whitespace
|
||||
content = await cleanNoteContent(content, note.type, note.mime);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error(`Error getting content for note ${noteId}:`, err);
|
||||
content = `[Error extracting content]`;
|
||||
|
||||
// Try fallback to original method
|
||||
try {
|
||||
const rawContent = String(await note.getContent() || "");
|
||||
if (note.type === 'text' || note.type === 'code') {
|
||||
content = rawContent;
|
||||
} else if (['canvas', 'mindMap', 'relationMap', 'mermaid', 'geoMap'].includes(note.type)) {
|
||||
content = extractStructuredContent(rawContent, note.type, note.mime);
|
||||
}
|
||||
content = await cleanNoteContent(content, note.type, note.mime);
|
||||
} catch (fallbackErr) {
|
||||
console.error(`Fallback content extraction also failed for note ${noteId}:`, fallbackErr);
|
||||
}
|
||||
}
|
||||
|
||||
// Get template/inheritance relationships
|
||||
// This is from FNote.getNotesToInheritAttributesFrom - recreating similar logic for BNote
|
||||
const templateRelations = note.getRelations('template').concat(note.getRelations('inherit'));
|
||||
const templateTitles = templateRelations
|
||||
.map(rel => rel.targetNote)
|
||||
.filter((note): note is BNote => note !== undefined)
|
||||
.map(templateNote => templateNote.title);
|
||||
|
||||
return {
|
||||
noteId: note.noteId,
|
||||
title: note.title,
|
||||
content: content,
|
||||
type: note.type,
|
||||
mime: note.mime,
|
||||
dateCreated: note.dateCreated || "",
|
||||
dateModified: note.dateModified || "",
|
||||
attributes,
|
||||
parentTitles,
|
||||
childTitles,
|
||||
attachments,
|
||||
backlinks,
|
||||
relatedNotes,
|
||||
labelValues,
|
||||
templateTitles
|
||||
};
|
||||
}
|
72
src/services/llm/embeddings/events.ts
Normal file
72
src/services/llm/embeddings/events.ts
Normal file
@ -0,0 +1,72 @@
|
||||
import eventService from "../../../services/events.js";
|
||||
import options from "../../../services/options.js";
|
||||
import log from "../../../services/log.js";
|
||||
import { queueNoteForEmbedding, processEmbeddingQueue } from "./queue.js";
|
||||
|
||||
/**
|
||||
* Setup event listeners for embedding-related events
|
||||
*/
|
||||
export function setupEmbeddingEventListeners() {
|
||||
// Listen for note content changes
|
||||
eventService.subscribe(eventService.NOTE_CONTENT_CHANGE, ({ entity }) => {
|
||||
if (entity && entity.noteId) {
|
||||
queueNoteForEmbedding(entity.noteId);
|
||||
}
|
||||
});
|
||||
|
||||
// Listen for new notes
|
||||
eventService.subscribe(eventService.ENTITY_CREATED, ({ entityName, entity }) => {
|
||||
if (entityName === "notes" && entity && entity.noteId) {
|
||||
queueNoteForEmbedding(entity.noteId);
|
||||
}
|
||||
});
|
||||
|
||||
// Listen for note title changes
|
||||
eventService.subscribe(eventService.NOTE_TITLE_CHANGED, ({ noteId }) => {
|
||||
if (noteId) {
|
||||
queueNoteForEmbedding(noteId);
|
||||
}
|
||||
});
|
||||
|
||||
// Listen for note deletions
|
||||
eventService.subscribe(eventService.ENTITY_DELETED, ({ entityName, entityId }) => {
|
||||
if (entityName === "notes" && entityId) {
|
||||
queueNoteForEmbedding(entityId, 'DELETE');
|
||||
}
|
||||
});
|
||||
|
||||
// Listen for attribute changes that might affect context
|
||||
eventService.subscribe(eventService.ENTITY_CHANGED, ({ entityName, entity }) => {
|
||||
if (entityName === "attributes" && entity && entity.noteId) {
|
||||
queueNoteForEmbedding(entity.noteId);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Setup background processing of the embedding queue
|
||||
*/
|
||||
export async function setupEmbeddingBackgroundProcessing() {
|
||||
const interval = parseInt(await options.getOption('embeddingUpdateInterval') || '5000', 10);
|
||||
|
||||
setInterval(async () => {
|
||||
try {
|
||||
await processEmbeddingQueue();
|
||||
} catch (error: any) {
|
||||
log.error(`Error in background embedding processing: ${error.message || 'Unknown error'}`);
|
||||
}
|
||||
}, interval);
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize embeddings system
|
||||
*/
|
||||
export async function initEmbeddings() {
|
||||
if (await options.getOptionBool('aiEnabled')) {
|
||||
setupEmbeddingEventListeners();
|
||||
await setupEmbeddingBackgroundProcessing();
|
||||
log.info("Embeddings system initialized");
|
||||
} else {
|
||||
log.info("Embeddings system disabled");
|
||||
}
|
||||
}
|
101
src/services/llm/embeddings/index.ts
Normal file
101
src/services/llm/embeddings/index.ts
Normal file
@ -0,0 +1,101 @@
|
||||
// Re-export all modules for easy access
|
||||
import * as vectorUtils from './vector_utils.js';
|
||||
import * as storage from './storage.js';
|
||||
import * as contentProcessing from './content_processing.js';
|
||||
import * as queue from './queue.js';
|
||||
// Import chunking dynamically to prevent circular dependencies
|
||||
// import * as chunking from './chunking.js';
|
||||
import * as events from './events.js';
|
||||
import * as stats from './stats.js';
|
||||
import { getChunkingOperations } from './chunking_interface.js';
|
||||
import type { NoteEmbeddingContext } from './types.js';
|
||||
|
||||
// Export types
|
||||
export * from './types.js';
|
||||
|
||||
// Maintain backward compatibility by exposing all functions at the top level
|
||||
export const {
|
||||
cosineSimilarity,
|
||||
embeddingToBuffer,
|
||||
bufferToEmbedding
|
||||
} = vectorUtils;
|
||||
|
||||
export const {
|
||||
storeNoteEmbedding,
|
||||
getEmbeddingForNote,
|
||||
findSimilarNotes,
|
||||
deleteNoteEmbeddings
|
||||
} = storage;
|
||||
|
||||
export const {
|
||||
getNoteEmbeddingContext,
|
||||
cleanNoteContent,
|
||||
extractStructuredContent
|
||||
} = contentProcessing;
|
||||
|
||||
export const {
|
||||
queueNoteForEmbedding,
|
||||
getFailedEmbeddingNotes,
|
||||
retryFailedEmbedding,
|
||||
retryAllFailedEmbeddings,
|
||||
processEmbeddingQueue
|
||||
} = queue;
|
||||
|
||||
// Export chunking function using the interface to break circular dependencies
|
||||
export const processNoteWithChunking = async (
|
||||
noteId: string,
|
||||
provider: any,
|
||||
context: NoteEmbeddingContext
|
||||
): Promise<void> => {
|
||||
const chunkingOps = await getChunkingOperations();
|
||||
return chunkingOps.processNoteWithChunking(noteId, provider, context);
|
||||
};
|
||||
|
||||
export const {
|
||||
setupEmbeddingEventListeners,
|
||||
setupEmbeddingBackgroundProcessing,
|
||||
initEmbeddings
|
||||
} = events;
|
||||
|
||||
export const {
|
||||
getEmbeddingStats,
|
||||
reprocessAllNotes,
|
||||
cleanupEmbeddings
|
||||
} = stats;
|
||||
|
||||
// Default export for backward compatibility
|
||||
export default {
|
||||
// Vector utils
|
||||
cosineSimilarity: vectorUtils.cosineSimilarity,
|
||||
embeddingToBuffer: vectorUtils.embeddingToBuffer,
|
||||
bufferToEmbedding: vectorUtils.bufferToEmbedding,
|
||||
|
||||
// Storage
|
||||
storeNoteEmbedding: storage.storeNoteEmbedding,
|
||||
getEmbeddingForNote: storage.getEmbeddingForNote,
|
||||
findSimilarNotes: storage.findSimilarNotes,
|
||||
deleteNoteEmbeddings: storage.deleteNoteEmbeddings,
|
||||
|
||||
// Content processing
|
||||
getNoteEmbeddingContext: contentProcessing.getNoteEmbeddingContext,
|
||||
|
||||
// Queue management
|
||||
queueNoteForEmbedding: queue.queueNoteForEmbedding,
|
||||
processEmbeddingQueue: queue.processEmbeddingQueue,
|
||||
getFailedEmbeddingNotes: queue.getFailedEmbeddingNotes,
|
||||
retryFailedEmbedding: queue.retryFailedEmbedding,
|
||||
retryAllFailedEmbeddings: queue.retryAllFailedEmbeddings,
|
||||
|
||||
// Chunking - use the dynamic wrapper
|
||||
processNoteWithChunking,
|
||||
|
||||
// Event handling
|
||||
setupEmbeddingEventListeners: events.setupEmbeddingEventListeners,
|
||||
setupEmbeddingBackgroundProcessing: events.setupEmbeddingBackgroundProcessing,
|
||||
initEmbeddings: events.initEmbeddings,
|
||||
|
||||
// Stats and maintenance
|
||||
getEmbeddingStats: stats.getEmbeddingStats,
|
||||
reprocessAllNotes: stats.reprocessAllNotes,
|
||||
cleanupEmbeddings: stats.cleanupEmbeddings
|
||||
};
|
@ -1,6 +1,6 @@
|
||||
import log from "../../log.js";
|
||||
import options from "../../options.js";
|
||||
import vectorStore from "./vector_store.js";
|
||||
import { initEmbeddings } from "./index.js";
|
||||
import providerManager from "./providers.js";
|
||||
|
||||
/**
|
||||
@ -15,7 +15,7 @@ export async function initializeEmbeddings() {
|
||||
|
||||
// Start the embedding system if AI is enabled
|
||||
if (await options.getOptionBool('aiEnabled')) {
|
||||
await vectorStore.initEmbeddings();
|
||||
await initEmbeddings();
|
||||
log.info("Embedding system initialized successfully.");
|
||||
} else {
|
||||
log.info("Embedding system disabled (AI features are turned off).");
|
||||
|
289
src/services/llm/embeddings/queue.ts
Normal file
289
src/services/llm/embeddings/queue.ts
Normal file
@ -0,0 +1,289 @@
|
||||
import sql from "../../../services/sql.js";
|
||||
import dateUtils from "../../../services/date_utils.js";
|
||||
import log from "../../../services/log.js";
|
||||
import becca from "../../../becca/becca.js";
|
||||
import options from "../../../services/options.js";
|
||||
import { getEnabledEmbeddingProviders } from "./providers.js";
|
||||
import { getNoteEmbeddingContext } from "./content_processing.js";
|
||||
import { deleteNoteEmbeddings } from "./storage.js";
|
||||
import type { QueueItem } from "./types.js";
|
||||
import { getChunkingOperations } from "./chunking_interface.js";
|
||||
|
||||
/**
|
||||
* Queues a note for embedding update
|
||||
*/
|
||||
export async function queueNoteForEmbedding(noteId: string, operation = 'UPDATE') {
|
||||
const now = dateUtils.localNowDateTime();
|
||||
const utcNow = dateUtils.utcNowDateTime();
|
||||
|
||||
// Check if note is already in queue
|
||||
const existing = await sql.getValue(
|
||||
"SELECT 1 FROM embedding_queue WHERE noteId = ?",
|
||||
[noteId]
|
||||
);
|
||||
|
||||
if (existing) {
|
||||
// Update existing queue entry
|
||||
await sql.execute(`
|
||||
UPDATE embedding_queue
|
||||
SET operation = ?, dateQueued = ?, utcDateQueued = ?, attempts = 0, error = NULL
|
||||
WHERE noteId = ?`,
|
||||
[operation, now, utcNow, noteId]
|
||||
);
|
||||
} else {
|
||||
// Add new queue entry
|
||||
await sql.execute(`
|
||||
INSERT INTO embedding_queue
|
||||
(noteId, operation, dateQueued, utcDateQueued)
|
||||
VALUES (?, ?, ?, ?)`,
|
||||
[noteId, operation, now, utcNow]
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get notes that have failed embedding generation
|
||||
*
|
||||
* @param limit - Maximum number of failed notes to return
|
||||
* @returns List of failed notes with their error information
|
||||
*/
|
||||
export async function getFailedEmbeddingNotes(limit: number = 100): Promise<any[]> {
|
||||
// Get notes with failed embedding attempts
|
||||
const failedQueueItems = await sql.getRows(`
|
||||
SELECT noteId, operation, attempts, lastAttempt, error
|
||||
FROM embedding_queue
|
||||
WHERE attempts > 0
|
||||
ORDER BY attempts DESC, lastAttempt DESC
|
||||
LIMIT ?`,
|
||||
[limit]
|
||||
) as {noteId: string, operation: string, attempts: number, lastAttempt: string, error: string}[];
|
||||
|
||||
// Add titles to the failed notes
|
||||
const failedNotesWithTitles = [];
|
||||
for (const item of failedQueueItems) {
|
||||
const note = becca.getNote(item.noteId);
|
||||
if (note) {
|
||||
// Check if this is a chunking error (contains the word "chunks")
|
||||
const isChunkFailure = item.error && item.error.toLowerCase().includes('chunk');
|
||||
|
||||
failedNotesWithTitles.push({
|
||||
...item,
|
||||
title: note.title,
|
||||
failureType: isChunkFailure ? 'chunks' : 'full'
|
||||
});
|
||||
} else {
|
||||
failedNotesWithTitles.push({
|
||||
...item,
|
||||
failureType: 'full'
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Sort by latest attempt
|
||||
failedNotesWithTitles.sort((a, b) => {
|
||||
if (a.lastAttempt && b.lastAttempt) {
|
||||
return b.lastAttempt.localeCompare(a.lastAttempt);
|
||||
}
|
||||
return 0;
|
||||
});
|
||||
|
||||
// Limit to the specified number
|
||||
return failedNotesWithTitles.slice(0, limit);
|
||||
}
|
||||
|
||||
/**
|
||||
* Retry embedding generation for a specific failed note
|
||||
*
|
||||
* @param noteId - ID of the note to retry
|
||||
* @returns Success flag
|
||||
*/
|
||||
export async function retryFailedEmbedding(noteId: string): Promise<boolean> {
|
||||
// Check if the note is in the embedding queue with failed attempts
|
||||
const exists = await sql.getValue(
|
||||
"SELECT 1 FROM embedding_queue WHERE noteId = ? AND attempts > 0",
|
||||
[noteId]
|
||||
);
|
||||
|
||||
if (exists) {
|
||||
// Reset the note in the queue
|
||||
const now = dateUtils.localNowDateTime();
|
||||
const utcNow = dateUtils.utcNowDateTime();
|
||||
|
||||
await sql.execute(`
|
||||
UPDATE embedding_queue
|
||||
SET attempts = 0, error = NULL, dateQueued = ?, utcDateQueued = ?
|
||||
WHERE noteId = ?`,
|
||||
[now, utcNow, noteId]
|
||||
);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Retry all failed embeddings
|
||||
*
|
||||
* @returns Number of notes queued for retry
|
||||
*/
|
||||
export async function retryAllFailedEmbeddings(): Promise<number> {
|
||||
// Get count of failed notes in queue
|
||||
const failedCount = await sql.getValue(
|
||||
"SELECT COUNT(*) FROM embedding_queue WHERE attempts > 0"
|
||||
) as number;
|
||||
|
||||
if (failedCount > 0) {
|
||||
// Reset all failed notes in the queue
|
||||
const now = dateUtils.localNowDateTime();
|
||||
const utcNow = dateUtils.utcNowDateTime();
|
||||
|
||||
await sql.execute(`
|
||||
UPDATE embedding_queue
|
||||
SET attempts = 0, error = NULL, dateQueued = ?, utcDateQueued = ?
|
||||
WHERE attempts > 0`,
|
||||
[now, utcNow]
|
||||
);
|
||||
}
|
||||
|
||||
return failedCount;
|
||||
}
|
||||
|
||||
/**
|
||||
* Process the embedding queue
|
||||
*/
|
||||
export async function processEmbeddingQueue() {
|
||||
if (!(await options.getOptionBool('aiEnabled'))) {
|
||||
return;
|
||||
}
|
||||
|
||||
const batchSize = parseInt(await options.getOption('embeddingBatchSize') || '10', 10);
|
||||
const enabledProviders = await getEnabledEmbeddingProviders();
|
||||
|
||||
if (enabledProviders.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get notes from queue
|
||||
const notes = await sql.getRows(`
|
||||
SELECT noteId, operation, attempts
|
||||
FROM embedding_queue
|
||||
ORDER BY priority DESC, utcDateQueued ASC
|
||||
LIMIT ?`,
|
||||
[batchSize]
|
||||
);
|
||||
|
||||
if (notes.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (const note of notes) {
|
||||
try {
|
||||
const noteData = note as unknown as QueueItem;
|
||||
|
||||
// Skip if note no longer exists
|
||||
if (!becca.getNote(noteData.noteId)) {
|
||||
await sql.execute(
|
||||
"DELETE FROM embedding_queue WHERE noteId = ?",
|
||||
[noteData.noteId]
|
||||
);
|
||||
await deleteNoteEmbeddings(noteData.noteId);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (noteData.operation === 'DELETE') {
|
||||
await deleteNoteEmbeddings(noteData.noteId);
|
||||
await sql.execute(
|
||||
"DELETE FROM embedding_queue WHERE noteId = ?",
|
||||
[noteData.noteId]
|
||||
);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Get note context for embedding
|
||||
const context = await getNoteEmbeddingContext(noteData.noteId);
|
||||
|
||||
// Check if we should use chunking for large content
|
||||
const useChunking = context.content.length > 5000;
|
||||
|
||||
// Track provider successes and failures
|
||||
let allProvidersFailed = true;
|
||||
let allProvidersSucceeded = true;
|
||||
|
||||
// Process with each enabled provider
|
||||
for (const provider of enabledProviders) {
|
||||
try {
|
||||
if (useChunking) {
|
||||
// Process large notes using chunking
|
||||
const chunkingOps = await getChunkingOperations();
|
||||
await chunkingOps.processNoteWithChunking(noteData.noteId, provider, context);
|
||||
allProvidersFailed = false;
|
||||
} else {
|
||||
// Standard approach: Generate a single embedding for the whole note
|
||||
const embedding = await provider.generateNoteEmbeddings(context);
|
||||
|
||||
// Store embedding
|
||||
const config = provider.getConfig();
|
||||
await import('./storage.js').then(storage => {
|
||||
return storage.storeNoteEmbedding(
|
||||
noteData.noteId,
|
||||
provider.name,
|
||||
config.model,
|
||||
embedding
|
||||
);
|
||||
});
|
||||
|
||||
// At least one provider succeeded
|
||||
allProvidersFailed = false;
|
||||
}
|
||||
} catch (providerError: any) {
|
||||
// This provider failed
|
||||
allProvidersSucceeded = false;
|
||||
log.error(`Error generating embedding with provider ${provider.name} for note ${noteData.noteId}: ${providerError.message || 'Unknown error'}`);
|
||||
}
|
||||
}
|
||||
|
||||
if (!allProvidersFailed) {
|
||||
// At least one provider succeeded, remove from queue
|
||||
await sql.execute(
|
||||
"DELETE FROM embedding_queue WHERE noteId = ?",
|
||||
[noteData.noteId]
|
||||
);
|
||||
} else {
|
||||
// If all providers failed, mark as failed but keep in queue
|
||||
await sql.execute(`
|
||||
UPDATE embedding_queue
|
||||
SET attempts = attempts + 1,
|
||||
lastAttempt = ?,
|
||||
error = ?
|
||||
WHERE noteId = ?`,
|
||||
[dateUtils.utcNowDateTime(), "All providers failed to generate embeddings", noteData.noteId]
|
||||
);
|
||||
|
||||
// Remove from queue if too many attempts
|
||||
if (noteData.attempts + 1 >= 3) {
|
||||
log.error(`Marked note ${noteData.noteId} as permanently failed after multiple embedding attempts`);
|
||||
}
|
||||
}
|
||||
} catch (error: any) {
|
||||
const noteData = note as unknown as QueueItem;
|
||||
|
||||
// Update attempt count and log error
|
||||
await sql.execute(`
|
||||
UPDATE embedding_queue
|
||||
SET attempts = attempts + 1,
|
||||
lastAttempt = ?,
|
||||
error = ?
|
||||
WHERE noteId = ?`,
|
||||
[dateUtils.utcNowDateTime(), error.message || 'Unknown error', noteData.noteId]
|
||||
);
|
||||
|
||||
log.error(`Error processing embedding for note ${noteData.noteId}: ${error.message || 'Unknown error'}`);
|
||||
|
||||
// Don't remove from queue even after multiple failures, just mark as failed
|
||||
// This allows manual retries later
|
||||
if (noteData.attempts + 1 >= 3) {
|
||||
log.error(`Marked note ${noteData.noteId} as permanently failed after multiple embedding attempts`);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
82
src/services/llm/embeddings/stats.ts
Normal file
82
src/services/llm/embeddings/stats.ts
Normal file
@ -0,0 +1,82 @@
|
||||
import sql from "../../../services/sql.js";
|
||||
import log from "../../../services/log.js";
|
||||
import { queueNoteForEmbedding } from "./queue.js";
|
||||
|
||||
/**
|
||||
* Reprocess all notes to update embeddings
|
||||
*/
|
||||
export async function reprocessAllNotes() {
|
||||
log.info("Queueing all notes for embedding updates");
|
||||
|
||||
const noteIds = await sql.getColumn(
|
||||
"SELECT noteId FROM notes WHERE isDeleted = 0"
|
||||
);
|
||||
|
||||
log.info(`Adding ${noteIds.length} notes to embedding queue`);
|
||||
|
||||
for (const noteId of noteIds) {
|
||||
await queueNoteForEmbedding(noteId as string, 'UPDATE');
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get current embedding statistics
|
||||
*/
|
||||
export async function getEmbeddingStats() {
|
||||
const totalNotesCount = await sql.getValue(
|
||||
"SELECT COUNT(*) FROM notes WHERE isDeleted = 0"
|
||||
) as number;
|
||||
|
||||
const embeddedNotesCount = await sql.getValue(
|
||||
"SELECT COUNT(DISTINCT noteId) FROM note_embeddings"
|
||||
) as number;
|
||||
|
||||
const queuedNotesCount = await sql.getValue(
|
||||
"SELECT COUNT(*) FROM embedding_queue"
|
||||
) as number;
|
||||
|
||||
const failedNotesCount = await sql.getValue(
|
||||
"SELECT COUNT(*) FROM embedding_queue WHERE attempts > 0"
|
||||
) as number;
|
||||
|
||||
// Get the last processing time by checking the most recent embedding
|
||||
const lastProcessedDate = await sql.getValue(
|
||||
"SELECT utcDateCreated FROM note_embeddings ORDER BY utcDateCreated DESC LIMIT 1"
|
||||
) as string | null || null;
|
||||
|
||||
// Calculate the actual completion percentage
|
||||
// When reprocessing, we need to consider notes in the queue as not completed yet
|
||||
// We calculate the percentage of notes that are embedded and NOT in the queue
|
||||
|
||||
// First, get the count of notes that are both in the embeddings table and queue
|
||||
const notesInQueueWithEmbeddings = await sql.getValue(`
|
||||
SELECT COUNT(DISTINCT eq.noteId)
|
||||
FROM embedding_queue eq
|
||||
JOIN note_embeddings ne ON eq.noteId = ne.noteId
|
||||
`) as number;
|
||||
|
||||
// The number of notes with valid, up-to-date embeddings
|
||||
const upToDateEmbeddings = embeddedNotesCount - notesInQueueWithEmbeddings;
|
||||
|
||||
// Calculate the percentage of notes that are properly embedded
|
||||
const percentComplete = totalNotesCount > 0
|
||||
? Math.round((upToDateEmbeddings / totalNotesCount) * 100)
|
||||
: 0;
|
||||
|
||||
return {
|
||||
totalNotesCount,
|
||||
embeddedNotesCount,
|
||||
queuedNotesCount,
|
||||
failedNotesCount,
|
||||
lastProcessedDate,
|
||||
percentComplete: Math.max(0, Math.min(100, percentComplete)) // Ensure between 0-100
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Cleanup function to remove stale or unused embeddings
|
||||
*/
|
||||
export function cleanupEmbeddings() {
|
||||
// Implementation can be added later when needed
|
||||
// For example, removing embeddings for deleted notes, etc.
|
||||
}
|
140
src/services/llm/embeddings/storage.ts
Normal file
140
src/services/llm/embeddings/storage.ts
Normal file
@ -0,0 +1,140 @@
|
||||
import sql from "../../../services/sql.js";
|
||||
import { randomString } from "../../../services/utils.js";
|
||||
import dateUtils from "../../../services/date_utils.js";
|
||||
import log from "../../../services/log.js";
|
||||
import { embeddingToBuffer, bufferToEmbedding, cosineSimilarity } from "./vector_utils.js";
|
||||
import type { EmbeddingResult } from "./types.js";
|
||||
|
||||
/**
|
||||
* Creates or updates an embedding for a note
|
||||
*/
|
||||
export async function storeNoteEmbedding(
|
||||
noteId: string,
|
||||
providerId: string,
|
||||
modelId: string,
|
||||
embedding: Float32Array
|
||||
): Promise<string> {
|
||||
const dimension = embedding.length;
|
||||
const embeddingBlob = embeddingToBuffer(embedding);
|
||||
const now = dateUtils.localNowDateTime();
|
||||
const utcNow = dateUtils.utcNowDateTime();
|
||||
|
||||
// Check if an embedding already exists for this note and provider/model
|
||||
const existingEmbed = await getEmbeddingForNote(noteId, providerId, modelId);
|
||||
|
||||
if (existingEmbed) {
|
||||
// Update existing embedding
|
||||
await sql.execute(`
|
||||
UPDATE note_embeddings
|
||||
SET embedding = ?, dimension = ?, version = version + 1,
|
||||
dateModified = ?, utcDateModified = ?
|
||||
WHERE embedId = ?`,
|
||||
[embeddingBlob, dimension, now, utcNow, existingEmbed.embedId]
|
||||
);
|
||||
return existingEmbed.embedId;
|
||||
} else {
|
||||
// Create new embedding
|
||||
const embedId = randomString(16);
|
||||
await sql.execute(`
|
||||
INSERT INTO note_embeddings
|
||||
(embedId, noteId, providerId, modelId, dimension, embedding,
|
||||
dateCreated, utcDateCreated, dateModified, utcDateModified)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)`,
|
||||
[embedId, noteId, providerId, modelId, dimension, embeddingBlob,
|
||||
now, utcNow, now, utcNow]
|
||||
);
|
||||
return embedId;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieves embedding for a specific note
|
||||
*/
|
||||
export async function getEmbeddingForNote(noteId: string, providerId: string, modelId: string): Promise<EmbeddingResult | null> {
|
||||
const row = await sql.getRow(`
|
||||
SELECT embedId, noteId, providerId, modelId, dimension, embedding, version,
|
||||
dateCreated, utcDateCreated, dateModified, utcDateModified
|
||||
FROM note_embeddings
|
||||
WHERE noteId = ? AND providerId = ? AND modelId = ?`,
|
||||
[noteId, providerId, modelId]
|
||||
);
|
||||
|
||||
if (!row) {
|
||||
return null;
|
||||
}
|
||||
|
||||
// Need to cast row to any as it doesn't have type information
|
||||
const rowData = row as any;
|
||||
|
||||
return {
|
||||
...rowData,
|
||||
embedding: bufferToEmbedding(rowData.embedding, rowData.dimension)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds similar notes based on vector similarity
|
||||
*/
|
||||
export async function findSimilarNotes(
|
||||
embedding: Float32Array,
|
||||
providerId: string,
|
||||
modelId: string,
|
||||
limit = 10,
|
||||
threshold?: number // Made optional to use constants
|
||||
): Promise<{noteId: string, similarity: number}[]> {
|
||||
// Import constants dynamically to avoid circular dependencies
|
||||
const { LLM_CONSTANTS } = await import('../../../routes/api/llm.js');
|
||||
// Use provided threshold or default from constants
|
||||
const similarityThreshold = threshold ?? LLM_CONSTANTS.SIMILARITY.DEFAULT_THRESHOLD;
|
||||
// Get all embeddings for the given provider and model
|
||||
const rows = await sql.getRows(`
|
||||
SELECT embedId, noteId, providerId, modelId, dimension, embedding
|
||||
FROM note_embeddings
|
||||
WHERE providerId = ? AND modelId = ?`,
|
||||
[providerId, modelId]
|
||||
);
|
||||
|
||||
if (!rows.length) {
|
||||
return [];
|
||||
}
|
||||
|
||||
// Calculate similarity for each embedding
|
||||
const similarities = rows.map(row => {
|
||||
const rowData = row as any;
|
||||
const rowEmbedding = bufferToEmbedding(rowData.embedding, rowData.dimension);
|
||||
return {
|
||||
noteId: rowData.noteId,
|
||||
similarity: cosineSimilarity(embedding, rowEmbedding)
|
||||
};
|
||||
});
|
||||
|
||||
// Filter by threshold and sort by similarity (highest first)
|
||||
return similarities
|
||||
.filter(item => item.similarity >= similarityThreshold)
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.slice(0, limit);
|
||||
}
|
||||
|
||||
/**
|
||||
* Delete embeddings for a note
|
||||
*
|
||||
* @param noteId - The ID of the note
|
||||
* @param providerId - Optional provider ID to delete embeddings only for a specific provider
|
||||
* @param modelId - Optional model ID to delete embeddings only for a specific model
|
||||
*/
|
||||
export async function deleteNoteEmbeddings(noteId: string, providerId?: string, modelId?: string) {
|
||||
let query = "DELETE FROM note_embeddings WHERE noteId = ?";
|
||||
const params: any[] = [noteId];
|
||||
|
||||
if (providerId) {
|
||||
query += " AND providerId = ?";
|
||||
params.push(providerId);
|
||||
|
||||
if (modelId) {
|
||||
query += " AND modelId = ?";
|
||||
params.push(modelId);
|
||||
}
|
||||
}
|
||||
|
||||
await sql.execute(query, params);
|
||||
}
|
29
src/services/llm/embeddings/types.ts
Normal file
29
src/services/llm/embeddings/types.ts
Normal file
@ -0,0 +1,29 @@
|
||||
import type { NoteEmbeddingContext } from "./embeddings_interface.js";
|
||||
|
||||
/**
|
||||
* Type definition for embedding result
|
||||
*/
|
||||
export interface EmbeddingResult {
|
||||
embedId: string;
|
||||
noteId: string;
|
||||
providerId: string;
|
||||
modelId: string;
|
||||
dimension: number;
|
||||
embedding: Float32Array;
|
||||
version: number;
|
||||
dateCreated: string;
|
||||
utcDateCreated: string;
|
||||
dateModified: string;
|
||||
utcDateModified: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Type for queue item
|
||||
*/
|
||||
export interface QueueItem {
|
||||
noteId: string;
|
||||
operation: string;
|
||||
attempts: number;
|
||||
}
|
||||
|
||||
export type { NoteEmbeddingContext };
|
File diff suppressed because it is too large
Load Diff
41
src/services/llm/embeddings/vector_utils.ts
Normal file
41
src/services/llm/embeddings/vector_utils.ts
Normal file
@ -0,0 +1,41 @@
|
||||
/**
|
||||
* Computes the cosine similarity between two vectors
|
||||
*/
|
||||
export function cosineSimilarity(a: Float32Array, b: Float32Array): number {
|
||||
if (a.length !== b.length) {
|
||||
throw new Error(`Vector dimensions don't match: ${a.length} vs ${b.length}`);
|
||||
}
|
||||
|
||||
let dotProduct = 0;
|
||||
let aMagnitude = 0;
|
||||
let bMagnitude = 0;
|
||||
|
||||
for (let i = 0; i < a.length; i++) {
|
||||
dotProduct += a[i] * b[i];
|
||||
aMagnitude += a[i] * a[i];
|
||||
bMagnitude += b[i] * b[i];
|
||||
}
|
||||
|
||||
aMagnitude = Math.sqrt(aMagnitude);
|
||||
bMagnitude = Math.sqrt(bMagnitude);
|
||||
|
||||
if (aMagnitude === 0 || bMagnitude === 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return dotProduct / (aMagnitude * bMagnitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts embedding Float32Array to Buffer for storage in SQLite
|
||||
*/
|
||||
export function embeddingToBuffer(embedding: Float32Array): Buffer {
|
||||
return Buffer.from(embedding.buffer);
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts Buffer from SQLite back to Float32Array
|
||||
*/
|
||||
export function bufferToEmbedding(buffer: Buffer, dimension: number): Float32Array {
|
||||
return new Float32Array(buffer.buffer, buffer.byteOffset, dimension);
|
||||
}
|
@ -12,7 +12,7 @@
|
||||
import log from "../log.js";
|
||||
import options from "../options.js";
|
||||
import becca from "../../becca/becca.js";
|
||||
import vectorStore from "./embeddings/vector_store.js";
|
||||
import vectorStore from "./embeddings/index.js";
|
||||
import providerManager from "./embeddings/providers.js";
|
||||
import { ContextExtractor } from "./context/index.js";
|
||||
import eventService from "../events.js";
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { ContextExtractor } from './context/index.js';
|
||||
import * as vectorStore from './embeddings/vector_store.js';
|
||||
import * as vectorStore from './embeddings/index.js';
|
||||
import sql from '../sql.js';
|
||||
import { cosineSimilarity } from './embeddings/vector_store.js';
|
||||
import { cosineSimilarity } from './embeddings/index.js';
|
||||
import log from '../log.js';
|
||||
import { getEmbeddingProvider, getEnabledEmbeddingProviders } from './embeddings/providers.js';
|
||||
import options from '../options.js';
|
||||
|
@ -1,10 +1,10 @@
|
||||
import becca from "../../becca/becca.js";
|
||||
import vectorStore from "./embeddings/vector_store.js";
|
||||
import vectorStore from "./embeddings/index.js";
|
||||
import providerManager from "./embeddings/providers.js";
|
||||
import options from "../options.js";
|
||||
import log from "../log.js";
|
||||
import type { Message } from "./ai_interface.js";
|
||||
import { cosineSimilarity } from "./embeddings/vector_store.js";
|
||||
import { cosineSimilarity } from "./embeddings/index.js";
|
||||
import sanitizeHtml from "sanitize-html";
|
||||
|
||||
/**
|
||||
|
Loading…
x
Reference in New Issue
Block a user