mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-08-10 10:22:29 +08:00
definitely don't need this
This commit is contained in:
parent
c716481ef8
commit
61eaf46a04
@ -99,13 +99,13 @@ export class ContextService {
|
||||
try {
|
||||
// Step 1: Generate search queries (skip if tool calling might be enabled)
|
||||
let searchQueries: string[];
|
||||
|
||||
|
||||
// Check if llmService has tool calling enabled
|
||||
const isToolsEnabled = llmService &&
|
||||
typeof llmService === 'object' &&
|
||||
'constructor' in llmService &&
|
||||
const isToolsEnabled = llmService &&
|
||||
typeof llmService === 'object' &&
|
||||
'constructor' in llmService &&
|
||||
llmService.constructor.name === 'OllamaService';
|
||||
|
||||
|
||||
if (isToolsEnabled) {
|
||||
// Skip query generation if tools might be used to avoid race conditions
|
||||
log.info(`Skipping query enhancement for potential tool-enabled service: ${llmService.constructor.name}`);
|
||||
@ -118,25 +118,25 @@ export class ContextService {
|
||||
searchQueries = [userQuestion]; // Fallback to using the original question
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
log.info(`Generated search queries: ${JSON.stringify(searchQueries)}`);
|
||||
|
||||
// Step 2: Find relevant notes using the pipeline's VectorSearchStage
|
||||
let relevantNotes: NoteSearchResult[] = [];
|
||||
try {
|
||||
log.info(`Using VectorSearchStage pipeline component to find relevant notes`);
|
||||
|
||||
|
||||
// Create or import the vector search stage
|
||||
const VectorSearchStage = (await import('../../pipeline/stages/vector_search_stage.js')).VectorSearchStage;
|
||||
const vectorSearchStage = new VectorSearchStage();
|
||||
|
||||
|
||||
// Use multi-query approach through the pipeline
|
||||
const allResults: Map<string, NoteSearchResult> = new Map();
|
||||
|
||||
|
||||
// Process searches using the pipeline stage
|
||||
for (const query of searchQueries) {
|
||||
log.info(`Executing pipeline vector search for query: "${query.substring(0, 50)}..."`);
|
||||
|
||||
|
||||
// Use the pipeline stage directly
|
||||
const result = await vectorSearchStage.execute({
|
||||
query,
|
||||
@ -148,10 +148,10 @@ export class ContextService {
|
||||
llmService // Pass the LLM service for potential use
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
const results = result.searchResults;
|
||||
log.info(`Pipeline vector search found ${results.length} results for query "${query.substring(0, 50)}..."`);
|
||||
|
||||
|
||||
// Combine results, avoiding duplicates
|
||||
for (const result of results) {
|
||||
if (!allResults.has(result.noteId)) {
|
||||
@ -458,6 +458,7 @@ export class ContextService {
|
||||
.filter(note => {
|
||||
// Filter out notes with no content or very minimal content
|
||||
const hasContent = note.content && note.content.trim().length > 10;
|
||||
log.info(`Note "${note.title}" (${note.noteId}) has content: ${hasContent} and content length: ${note.content ? note.content.length : 0} chars`);
|
||||
if (!hasContent) {
|
||||
log.info(`Filtering out empty/minimal note from combined results: "${note.title}" (${note.noteId})`);
|
||||
}
|
||||
@ -467,151 +468,69 @@ export class ContextService {
|
||||
|
||||
log.info(`Combined ${relevantNotes.length} notes from initial search with ${vectorSearchNotes.length} notes from vector search, resulting in ${combinedNotes.length} unique notes after filtering out empty notes`);
|
||||
|
||||
// Filter for Qu-related notes
|
||||
const quNotes = combinedNotes.filter(result =>
|
||||
result.title.toLowerCase().includes('qu') ||
|
||||
(result.content && result.content.toLowerCase().includes('qu'))
|
||||
);
|
||||
// Just take the top notes by similarity
|
||||
const finalNotes = combinedNotes.slice(0, 30); // Take top 30 notes
|
||||
|
||||
if (quNotes.length > 0) {
|
||||
log.info(`Found ${quNotes.length} Qu-related notes out of ${combinedNotes.length} total notes`);
|
||||
quNotes.forEach((note, idx) => {
|
||||
if (idx < 3) { // Log just a sample to avoid log spam
|
||||
log.info(`Qu note ${idx+1}: "${note.title}" (similarity: ${Math.round(note.similarity * 100)}%), content length: ${note.content ? note.content.length : 0} chars`);
|
||||
}
|
||||
});
|
||||
if (finalNotes.length > 0) {
|
||||
agentContext += `## Relevant Information\n`;
|
||||
|
||||
// Prioritize Qu notes first, then other notes by similarity
|
||||
const nonQuNotes = combinedNotes.filter(note => !quNotes.includes(note));
|
||||
const finalNotes = [...quNotes, ...nonQuNotes].slice(0, 30); // Take top 30 prioritized notes
|
||||
for (const note of finalNotes) {
|
||||
agentContext += `### ${note.title}\n`;
|
||||
|
||||
log.info(`Selected ${finalNotes.length} notes for context, with ${quNotes.length} Qu-related notes prioritized`);
|
||||
// Add relationship information for the note
|
||||
try {
|
||||
const noteObj = becca.getNote(note.noteId);
|
||||
if (noteObj) {
|
||||
// Get parent notes
|
||||
const parentNotes = noteObj.getParentNotes();
|
||||
if (parentNotes && parentNotes.length > 0) {
|
||||
agentContext += `**Parent notes:** ${parentNotes.map((p: any) => p.title).join(', ')}\n`;
|
||||
}
|
||||
|
||||
// Add the selected notes to the context
|
||||
if (finalNotes.length > 0) {
|
||||
agentContext += `## Relevant Information\n`;
|
||||
// Get child notes
|
||||
const childNotes = noteObj.getChildNotes();
|
||||
if (childNotes && childNotes.length > 0) {
|
||||
agentContext += `**Child notes:** ${childNotes.map((c: any) => c.title).join(', ')}\n`;
|
||||
}
|
||||
|
||||
for (const note of finalNotes) {
|
||||
agentContext += `### ${note.title}\n`;
|
||||
|
||||
// Add relationship information for the note
|
||||
try {
|
||||
const noteObj = becca.getNote(note.noteId);
|
||||
if (noteObj) {
|
||||
// Get parent notes
|
||||
const parentNotes = noteObj.getParentNotes();
|
||||
if (parentNotes && parentNotes.length > 0) {
|
||||
agentContext += `**Parent notes:** ${parentNotes.map((p: any) => p.title).join(', ')}\n`;
|
||||
}
|
||||
|
||||
// Get child notes
|
||||
const childNotes = noteObj.getChildNotes();
|
||||
if (childNotes && childNotes.length > 0) {
|
||||
agentContext += `**Child notes:** ${childNotes.map((c: any) => c.title).join(', ')}\n`;
|
||||
}
|
||||
|
||||
// Get attributes
|
||||
const attributes = noteObj.getAttributes();
|
||||
if (attributes && attributes.length > 0) {
|
||||
const filteredAttrs = attributes.filter((a: any) => !a.name.startsWith('_')); // Filter out system attributes
|
||||
if (filteredAttrs.length > 0) {
|
||||
agentContext += `**Attributes:** ${filteredAttrs.map((a: any) => `${a.name}=${a.value}`).join(', ')}\n`;
|
||||
}
|
||||
}
|
||||
|
||||
// Get backlinks/related notes through relation attributes
|
||||
const relationAttrs = attributes?.filter((a: any) =>
|
||||
a.name.startsWith('relation:') ||
|
||||
a.name.startsWith('label:')
|
||||
);
|
||||
|
||||
if (relationAttrs && relationAttrs.length > 0) {
|
||||
agentContext += `**Relationships:** ${relationAttrs.map((a: any) => {
|
||||
const targetNote = becca.getNote(a.value);
|
||||
const targetTitle = targetNote ? targetNote.title : a.value;
|
||||
return `${a.name.substring(a.name.indexOf(':') + 1)} → ${targetTitle}`;
|
||||
}).join(', ')}\n`;
|
||||
// Get attributes
|
||||
const attributes = noteObj.getAttributes();
|
||||
if (attributes && attributes.length > 0) {
|
||||
const filteredAttrs = attributes.filter((a: any) => !a.name.startsWith('_')); // Filter out system attributes
|
||||
if (filteredAttrs.length > 0) {
|
||||
agentContext += `**Attributes:** ${filteredAttrs.map((a: any) => `${a.name}=${a.value}`).join(', ')}\n`;
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
log.error(`Error getting relationship info for note ${note.noteId}: ${error}`);
|
||||
}
|
||||
|
||||
agentContext += '\n';
|
||||
// Get backlinks/related notes through relation attributes
|
||||
const relationAttrs = attributes?.filter((a: any) =>
|
||||
a.name.startsWith('relation:') ||
|
||||
a.name.startsWith('label:')
|
||||
);
|
||||
|
||||
if (note.content) {
|
||||
// Extract relevant content instead of just taking first 2000 chars
|
||||
const relevantContent = await this.extractRelevantContent(note.content, query, 2000);
|
||||
agentContext += `${relevantContent}\n\n`;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
log.info(`No Qu-related notes found among the ${combinedNotes.length} combined notes`);
|
||||
|
||||
// Just take the top notes by similarity
|
||||
const finalNotes = combinedNotes.slice(0, 30); // Take top 30 notes
|
||||
|
||||
if (finalNotes.length > 0) {
|
||||
agentContext += `## Relevant Information\n`;
|
||||
|
||||
for (const note of finalNotes) {
|
||||
agentContext += `### ${note.title}\n`;
|
||||
|
||||
// Add relationship information for the note
|
||||
try {
|
||||
const noteObj = becca.getNote(note.noteId);
|
||||
if (noteObj) {
|
||||
// Get parent notes
|
||||
const parentNotes = noteObj.getParentNotes();
|
||||
if (parentNotes && parentNotes.length > 0) {
|
||||
agentContext += `**Parent notes:** ${parentNotes.map((p: any) => p.title).join(', ')}\n`;
|
||||
}
|
||||
|
||||
// Get child notes
|
||||
const childNotes = noteObj.getChildNotes();
|
||||
if (childNotes && childNotes.length > 0) {
|
||||
agentContext += `**Child notes:** ${childNotes.map((c: any) => c.title).join(', ')}\n`;
|
||||
}
|
||||
|
||||
// Get attributes
|
||||
const attributes = noteObj.getAttributes();
|
||||
if (attributes && attributes.length > 0) {
|
||||
const filteredAttrs = attributes.filter((a: any) => !a.name.startsWith('_')); // Filter out system attributes
|
||||
if (filteredAttrs.length > 0) {
|
||||
agentContext += `**Attributes:** ${filteredAttrs.map((a: any) => `${a.name}=${a.value}`).join(', ')}\n`;
|
||||
}
|
||||
}
|
||||
|
||||
// Get backlinks/related notes through relation attributes
|
||||
const relationAttrs = attributes?.filter((a: any) =>
|
||||
a.name.startsWith('relation:') ||
|
||||
a.name.startsWith('label:')
|
||||
);
|
||||
|
||||
if (relationAttrs && relationAttrs.length > 0) {
|
||||
agentContext += `**Relationships:** ${relationAttrs.map((a: any) => {
|
||||
const targetNote = becca.getNote(a.value);
|
||||
const targetTitle = targetNote ? targetNote.title : a.value;
|
||||
return `${a.name.substring(a.name.indexOf(':') + 1)} → ${targetTitle}`;
|
||||
}).join(', ')}\n`;
|
||||
}
|
||||
if (relationAttrs && relationAttrs.length > 0) {
|
||||
agentContext += `**Relationships:** ${relationAttrs.map((a: any) => {
|
||||
const targetNote = becca.getNote(a.value);
|
||||
const targetTitle = targetNote ? targetNote.title : a.value;
|
||||
return `${a.name.substring(a.name.indexOf(':') + 1)} → ${targetTitle}`;
|
||||
}).join(', ')}\n`;
|
||||
}
|
||||
} catch (error) {
|
||||
log.error(`Error getting relationship info for note ${note.noteId}: ${error}`);
|
||||
}
|
||||
} catch (error) {
|
||||
log.error(`Error getting relationship info for note ${note.noteId}: ${error}`);
|
||||
}
|
||||
|
||||
agentContext += '\n';
|
||||
agentContext += '\n';
|
||||
|
||||
if (note.content) {
|
||||
// Extract relevant content instead of just taking first 2000 chars
|
||||
const relevantContent = await this.extractRelevantContent(note.content, query, 2000);
|
||||
agentContext += `${relevantContent}\n\n`;
|
||||
}
|
||||
if (note.content) {
|
||||
// Extract relevant content instead of just taking first 2000 chars
|
||||
const relevantContent = await this.extractRelevantContent(note.content, query, 2000);
|
||||
agentContext += `${relevantContent}\n\n`;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Add thinking process if requested
|
||||
if (showThinking) {
|
||||
log.info(`Including thinking process in context (showThinking=true)`);
|
||||
|
Loading…
x
Reference in New Issue
Block a user