mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-09-23 21:17:11 +08:00
break up the rest_chat_service
This commit is contained in:
parent
77e637384d
commit
534396bce5
168
src/services/llm/chat/handlers/context-handler.ts
Normal file
168
src/services/llm/chat/handlers/context-handler.ts
Normal file
@ -0,0 +1,168 @@
|
||||
/**
|
||||
* Handler for LLM context management
|
||||
*/
|
||||
import log from "../../../log.js";
|
||||
import becca from "../../../../becca/becca.js";
|
||||
import vectorStore from "../../embeddings/index.js";
|
||||
import providerManager from "../../providers/providers.js";
|
||||
import contextService from "../../context/services/context_service.js";
|
||||
import type { NoteSource } from "../interfaces/session.js";
|
||||
import { SEARCH_CONSTANTS } from '../../constants/search_constants.js';
|
||||
|
||||
/**
|
||||
* Handles context management for LLM chat
|
||||
*/
|
||||
export class ContextHandler {
|
||||
/**
|
||||
* Find relevant notes based on search query
|
||||
* @param content The search content
|
||||
* @param contextNoteId Optional note ID for context
|
||||
* @param limit Maximum number of results to return
|
||||
* @returns Array of relevant note sources
|
||||
*/
|
||||
static async findRelevantNotes(content: string, contextNoteId: string | null = null, limit = 5): Promise<NoteSource[]> {
|
||||
try {
|
||||
// If content is too short, don't bother
|
||||
if (content.length < 3) {
|
||||
return [];
|
||||
}
|
||||
|
||||
// Check if embeddings are available
|
||||
const enabledProviders = await providerManager.getEnabledEmbeddingProviders();
|
||||
if (enabledProviders.length === 0) {
|
||||
log.info("No embedding providers available, can't find relevant notes");
|
||||
return [];
|
||||
}
|
||||
|
||||
// Get the embedding for the query
|
||||
const provider = enabledProviders[0];
|
||||
const embedding = await provider.generateEmbeddings(content);
|
||||
|
||||
let results;
|
||||
if (contextNoteId) {
|
||||
// For branch context, get notes specifically from that branch
|
||||
const contextNote = becca.notes[contextNoteId];
|
||||
if (!contextNote) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const sql = require("../../../../services/sql.js").default;
|
||||
const childBranches = await sql.getRows(`
|
||||
SELECT branches.* FROM branches
|
||||
WHERE branches.parentNoteId = ?
|
||||
AND branches.isDeleted = 0
|
||||
`, [contextNoteId]);
|
||||
|
||||
const childNoteIds = childBranches.map((branch: any) => branch.noteId);
|
||||
|
||||
// Include the context note itself
|
||||
childNoteIds.push(contextNoteId);
|
||||
|
||||
// Find similar notes in this context
|
||||
results = [];
|
||||
|
||||
for (const noteId of childNoteIds) {
|
||||
const noteEmbedding = await vectorStore.getEmbeddingForNote(
|
||||
noteId,
|
||||
provider.name,
|
||||
provider.getConfig().model
|
||||
);
|
||||
|
||||
if (noteEmbedding) {
|
||||
const similarity = vectorStore.cosineSimilarity(
|
||||
embedding,
|
||||
noteEmbedding.embedding
|
||||
);
|
||||
|
||||
if (similarity > SEARCH_CONSTANTS.VECTOR_SEARCH.EXACT_MATCH_THRESHOLD) {
|
||||
results.push({
|
||||
noteId,
|
||||
similarity
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sort by similarity
|
||||
results.sort((a, b) => b.similarity - a.similarity);
|
||||
results = results.slice(0, limit);
|
||||
} else {
|
||||
// General search across all notes
|
||||
results = await vectorStore.findSimilarNotes(
|
||||
embedding,
|
||||
provider.name,
|
||||
provider.getConfig().model,
|
||||
limit
|
||||
);
|
||||
}
|
||||
|
||||
// Format the results
|
||||
const sources: NoteSource[] = [];
|
||||
|
||||
for (const result of results) {
|
||||
const note = becca.notes[result.noteId];
|
||||
if (!note) continue;
|
||||
|
||||
let noteContent: string | undefined = undefined;
|
||||
if (note.type === 'text') {
|
||||
const content = note.getContent();
|
||||
// Handle both string and Buffer types
|
||||
noteContent = typeof content === 'string' ? content :
|
||||
content instanceof Buffer ? content.toString('utf8') : undefined;
|
||||
}
|
||||
|
||||
sources.push({
|
||||
noteId: result.noteId,
|
||||
title: note.title,
|
||||
content: noteContent,
|
||||
similarity: result.similarity,
|
||||
branchId: note.getBranches()[0]?.branchId
|
||||
});
|
||||
}
|
||||
|
||||
return sources;
|
||||
} catch (error: any) {
|
||||
log.error(`Error finding relevant notes: ${error.message}`);
|
||||
return [];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process enhanced context using the context service
|
||||
* @param query Query to process
|
||||
* @param contextNoteId Optional note ID for context
|
||||
* @param showThinking Whether to show thinking process
|
||||
*/
|
||||
static async processEnhancedContext(query: string, llmService: any, options: {
|
||||
contextNoteId?: string,
|
||||
showThinking?: boolean
|
||||
}) {
|
||||
// Use the Trilium-specific approach
|
||||
const contextNoteId = options.contextNoteId || null;
|
||||
const showThinking = options.showThinking || false;
|
||||
|
||||
// Log that we're calling contextService with the parameters
|
||||
log.info(`Using enhanced context with: noteId=${contextNoteId}, showThinking=${showThinking}`);
|
||||
|
||||
// Call context service for processing
|
||||
const results = await contextService.processQuery(
|
||||
query,
|
||||
llmService,
|
||||
{
|
||||
contextNoteId,
|
||||
showThinking
|
||||
}
|
||||
);
|
||||
|
||||
// Return the generated context and sources
|
||||
return {
|
||||
context: results.context,
|
||||
sources: results.sources.map(source => ({
|
||||
noteId: source.noteId,
|
||||
title: source.title,
|
||||
content: source.content || undefined, // Convert null to undefined
|
||||
similarity: source.similarity
|
||||
}))
|
||||
};
|
||||
}
|
||||
}
|
368
src/services/llm/chat/handlers/stream-handler.ts
Normal file
368
src/services/llm/chat/handlers/stream-handler.ts
Normal file
@ -0,0 +1,368 @@
|
||||
/**
|
||||
* Handler for streaming LLM responses
|
||||
*/
|
||||
import log from "../../../log.js";
|
||||
import type { Response } from "express";
|
||||
import type { StreamChunk } from "../../ai_interface.js";
|
||||
import type { LLMStreamMessage } from "../interfaces/ws-messages.js";
|
||||
import type { ChatSession } from "../interfaces/session.js";
|
||||
|
||||
/**
|
||||
* Handles streaming of LLM responses via WebSocket
|
||||
*/
|
||||
export class StreamHandler {
|
||||
/**
|
||||
* Handle streaming response via WebSocket
|
||||
*
|
||||
* This method processes LLM responses and sends them incrementally via WebSocket
|
||||
* to the client, supporting both text content and tool execution status updates.
|
||||
*
|
||||
* @param res Express response object
|
||||
* @param aiMessages Messages to send to the LLM
|
||||
* @param chatOptions Options for the chat completion
|
||||
* @param service LLM service to use
|
||||
* @param session Chat session for storing the response
|
||||
*/
|
||||
static async handleStreamingResponse(
|
||||
res: Response,
|
||||
aiMessages: any[],
|
||||
chatOptions: any,
|
||||
service: any,
|
||||
session: ChatSession
|
||||
): Promise<void> {
|
||||
// The client receives a success response for their HTTP request,
|
||||
// but the actual content will be streamed via WebSocket
|
||||
res.json({ success: true, message: 'Streaming response started' });
|
||||
|
||||
// Import the WebSocket service
|
||||
const wsService = (await import('../../../ws.js')).default;
|
||||
|
||||
let messageContent = '';
|
||||
const sessionId = session.id;
|
||||
|
||||
// Immediately send an initial message to confirm WebSocket connection is working
|
||||
// This helps prevent timeouts on the client side
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
thinking: 'Preparing response...'
|
||||
} as LLMStreamMessage);
|
||||
|
||||
try {
|
||||
// Import the tool handler
|
||||
const { ToolHandler } = await import('./tool-handler.js');
|
||||
|
||||
// Generate the LLM completion with streaming enabled
|
||||
const response = await service.generateChatCompletion(aiMessages, {
|
||||
...chatOptions,
|
||||
stream: true
|
||||
});
|
||||
|
||||
// If the model doesn't support streaming via .stream() method or returns tool calls,
|
||||
// we'll handle it specially
|
||||
if (response.tool_calls && response.tool_calls.length > 0) {
|
||||
// Send thinking state notification via WebSocket
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
thinking: 'Analyzing tools needed for this request...'
|
||||
} as LLMStreamMessage);
|
||||
|
||||
try {
|
||||
// Execute the tools
|
||||
const toolResults = await ToolHandler.executeToolCalls(response, sessionId);
|
||||
|
||||
// For each tool execution, send progress update via WebSocket
|
||||
for (const toolResult of toolResults) {
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
toolExecution: {
|
||||
action: 'complete',
|
||||
tool: toolResult.name,
|
||||
result: toolResult.content.substring(0, 100) + (toolResult.content.length > 100 ? '...' : '')
|
||||
}
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
|
||||
// Make follow-up request with tool results
|
||||
const toolMessages = [...aiMessages, {
|
||||
role: 'assistant',
|
||||
content: response.text || '',
|
||||
tool_calls: response.tool_calls
|
||||
}, ...toolResults];
|
||||
|
||||
// Preserve streaming for follow-up if it was enabled in the original request
|
||||
const followUpOptions = {
|
||||
...chatOptions,
|
||||
// Only disable streaming if it wasn't explicitly requested
|
||||
stream: chatOptions.stream === true,
|
||||
// Allow tools but track iterations to prevent infinite loops
|
||||
enableTools: true,
|
||||
maxToolIterations: chatOptions.maxToolIterations || 5,
|
||||
currentToolIteration: 1 // Start counting tool iterations
|
||||
};
|
||||
|
||||
const followUpResponse = await service.generateChatCompletion(toolMessages, followUpOptions);
|
||||
|
||||
await this.processStreamedResponse(
|
||||
followUpResponse,
|
||||
wsService,
|
||||
sessionId,
|
||||
session,
|
||||
toolMessages,
|
||||
followUpOptions,
|
||||
service
|
||||
);
|
||||
} catch (toolError: any) {
|
||||
log.error(`Error executing tools: ${toolError.message}`);
|
||||
|
||||
// Send error via WebSocket with done flag
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
error: `Error executing tools: ${toolError instanceof Error ? toolError.message : 'Unknown error'}`,
|
||||
done: true
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
} else if (response.stream) {
|
||||
// Handle standard streaming through the stream() method
|
||||
log.info(`Provider ${service.getName ? service.getName() : 'unknown'} supports streaming via stream() method`);
|
||||
|
||||
// Store information about the model and provider in session metadata
|
||||
session.metadata.model = response.model || session.metadata.model;
|
||||
session.metadata.provider = response.provider || session.metadata.provider;
|
||||
session.metadata.lastUpdated = new Date().toISOString();
|
||||
|
||||
await this.processStreamedResponse(
|
||||
response,
|
||||
wsService,
|
||||
sessionId,
|
||||
session
|
||||
);
|
||||
} else {
|
||||
log.info(`Provider ${service.getName ? service.getName() : 'unknown'} does not support streaming via stream() method, falling back to single response`);
|
||||
|
||||
// If streaming isn't available, send the entire response at once
|
||||
messageContent = response.text || '';
|
||||
|
||||
// Send via WebSocket - include both content and done flag in same message
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
content: messageContent,
|
||||
done: true
|
||||
} as LLMStreamMessage);
|
||||
|
||||
log.info(`Complete response sent`);
|
||||
|
||||
// Store the full response in the session
|
||||
session.messages.push({
|
||||
role: 'assistant',
|
||||
content: messageContent,
|
||||
timestamp: new Date()
|
||||
});
|
||||
}
|
||||
} catch (streamingError: any) {
|
||||
log.error(`Streaming error: ${streamingError.message}`);
|
||||
|
||||
// Import the WebSocket service directly in case it wasn't imported earlier
|
||||
const wsService = (await import('../../../ws.js')).default;
|
||||
|
||||
// Send error via WebSocket
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
error: `Error generating response: ${streamingError instanceof Error ? streamingError.message : 'Unknown error'}`
|
||||
} as LLMStreamMessage);
|
||||
|
||||
// Signal completion
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
done: true
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process a streamed response from an LLM
|
||||
*/
|
||||
private static async processStreamedResponse(
|
||||
response: any,
|
||||
wsService: any,
|
||||
sessionId: string,
|
||||
session: ChatSession,
|
||||
toolMessages?: any[],
|
||||
followUpOptions?: any,
|
||||
service?: any
|
||||
): Promise<void> {
|
||||
// Import tool handler lazily to avoid circular dependencies
|
||||
const { ToolHandler } = await import('./tool-handler.js');
|
||||
|
||||
let messageContent = '';
|
||||
|
||||
try {
|
||||
await response.stream(async (chunk: StreamChunk) => {
|
||||
if (chunk.text) {
|
||||
messageContent += chunk.text;
|
||||
|
||||
// Enhanced logging for each chunk
|
||||
log.info(`Received stream chunk with ${chunk.text.length} chars of text, done=${!!chunk.done}`);
|
||||
|
||||
// Send each individual chunk via WebSocket as it arrives
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
content: chunk.text,
|
||||
done: !!chunk.done, // Include done flag with each chunk
|
||||
// Include any raw data from the provider that might contain thinking/tool info
|
||||
...(chunk.raw ? { raw: chunk.raw } : {})
|
||||
} as LLMStreamMessage);
|
||||
|
||||
// Log the first chunk (useful for debugging)
|
||||
if (messageContent.length === chunk.text.length) {
|
||||
log.info(`First stream chunk received: "${chunk.text.substring(0, 50)}${chunk.text.length > 50 ? '...' : ''}"`);
|
||||
}
|
||||
}
|
||||
|
||||
// If the provider indicates this is "thinking" state, relay that
|
||||
if (chunk.raw?.thinking) {
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
thinking: chunk.raw.thinking
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
|
||||
// If the provider indicates tool execution, relay that
|
||||
if (chunk.raw?.toolExecution) {
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
toolExecution: chunk.raw.toolExecution
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
|
||||
// Handle direct tool_calls in the response (for OpenAI)
|
||||
if (chunk.tool_calls && chunk.tool_calls.length > 0) {
|
||||
log.info(`Detected direct tool_calls in stream chunk: ${chunk.tool_calls.length} tools`);
|
||||
|
||||
// Send tool execution notification
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'tool_execution_start',
|
||||
sessionId
|
||||
} as LLMStreamMessage);
|
||||
|
||||
// Process each tool call
|
||||
for (const toolCall of chunk.tool_calls) {
|
||||
// Process arguments
|
||||
let args = toolCall.function?.arguments;
|
||||
if (typeof args === 'string') {
|
||||
try {
|
||||
args = JSON.parse(args);
|
||||
} catch (e) {
|
||||
log.info(`Could not parse tool arguments as JSON: ${e}`);
|
||||
args = { raw: args };
|
||||
}
|
||||
}
|
||||
|
||||
// Format into a standardized tool execution message
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'tool_result',
|
||||
sessionId,
|
||||
toolExecution: {
|
||||
action: 'executing',
|
||||
tool: toolCall.function?.name || 'unknown',
|
||||
toolCallId: toolCall.id,
|
||||
args: args
|
||||
}
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
}
|
||||
|
||||
// Signal completion when done
|
||||
if (chunk.done) {
|
||||
log.info(`Stream completed, total content: ${messageContent.length} chars`);
|
||||
|
||||
// Check if there are more tool calls to execute (recursive tool calling)
|
||||
if (service && toolMessages && followUpOptions &&
|
||||
response.tool_calls && response.tool_calls.length > 0 &&
|
||||
followUpOptions.currentToolIteration < followUpOptions.maxToolIterations) {
|
||||
|
||||
log.info(`Found ${response.tool_calls.length} more tool calls in iteration ${followUpOptions.currentToolIteration}`);
|
||||
|
||||
// Execute these tool calls in another iteration
|
||||
const assistantMessage = {
|
||||
role: 'assistant' as const,
|
||||
content: messageContent,
|
||||
tool_calls: response.tool_calls
|
||||
};
|
||||
|
||||
// Execute the next round of tools
|
||||
const nextToolResults = await ToolHandler.executeToolCalls(response, sessionId);
|
||||
|
||||
// Create a new messages array with the latest tool results
|
||||
const nextToolMessages = [...toolMessages, assistantMessage, ...nextToolResults];
|
||||
|
||||
// Increment the tool iteration counter for the next call
|
||||
const nextFollowUpOptions = {
|
||||
...followUpOptions,
|
||||
currentToolIteration: followUpOptions.currentToolIteration + 1
|
||||
};
|
||||
|
||||
log.info(`Making another follow-up request (iteration ${nextFollowUpOptions.currentToolIteration}/${nextFollowUpOptions.maxToolIterations})`);
|
||||
|
||||
// Make another follow-up request
|
||||
const nextResponse = await service.generateChatCompletion(nextToolMessages, nextFollowUpOptions);
|
||||
|
||||
// Process the next response recursively
|
||||
await this.processStreamedResponse(
|
||||
nextResponse,
|
||||
wsService,
|
||||
sessionId,
|
||||
session,
|
||||
nextToolMessages,
|
||||
nextFollowUpOptions,
|
||||
service
|
||||
);
|
||||
} else {
|
||||
// Only send final done message if it wasn't already sent with content
|
||||
// This ensures we don't duplicate the content but still mark completion
|
||||
if (!chunk.text) {
|
||||
log.info(`No content in final chunk, sending explicit completion message`);
|
||||
|
||||
// Send final message with done flag only (no content)
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
done: true
|
||||
} as LLMStreamMessage);
|
||||
}
|
||||
|
||||
// Store the full response in the session
|
||||
session.messages.push({
|
||||
role: 'assistant',
|
||||
content: messageContent,
|
||||
timestamp: new Date()
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
log.info(`Streaming completed successfully`);
|
||||
} catch (streamError: any) {
|
||||
log.error(`Error during streaming: ${streamError.message}`);
|
||||
|
||||
// Report the error to the client
|
||||
wsService.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
error: `Error during streaming: ${streamError instanceof Error ? streamError.message : 'Unknown error'}`,
|
||||
done: true
|
||||
} as LLMStreamMessage);
|
||||
|
||||
throw streamError;
|
||||
}
|
||||
}
|
||||
}
|
181
src/services/llm/chat/handlers/tool-handler.ts
Normal file
181
src/services/llm/chat/handlers/tool-handler.ts
Normal file
@ -0,0 +1,181 @@
|
||||
/**
|
||||
* Handler for LLM tool executions
|
||||
*/
|
||||
import log from "../../../log.js";
|
||||
import type { Message } from "../../ai_interface.js";
|
||||
import SessionsStore from "../sessions-store.js";
|
||||
|
||||
/**
|
||||
* Handles the execution of LLM tools
|
||||
*/
|
||||
export class ToolHandler {
|
||||
/**
|
||||
* Execute tool calls from the LLM response
|
||||
* @param response The LLM response containing tool calls
|
||||
* @param sessionId Optional session ID for tracking
|
||||
*/
|
||||
static async executeToolCalls(response: any, sessionId?: string): Promise<Message[]> {
|
||||
log.info(`========== TOOL EXECUTION FLOW ==========`);
|
||||
if (!response.tool_calls || response.tool_calls.length === 0) {
|
||||
log.info(`No tool calls to execute, returning early`);
|
||||
return [];
|
||||
}
|
||||
|
||||
log.info(`Executing ${response.tool_calls.length} tool calls`);
|
||||
|
||||
try {
|
||||
// Import tool registry directly to avoid circular dependencies
|
||||
const toolRegistry = (await import('../../tools/tool_registry.js')).default;
|
||||
|
||||
// Check if tools are available
|
||||
const availableTools = toolRegistry.getAllTools();
|
||||
log.info(`Available tools in registry: ${availableTools.length}`);
|
||||
|
||||
if (availableTools.length === 0) {
|
||||
log.error('No tools available in registry for execution');
|
||||
|
||||
// Try to initialize tools
|
||||
try {
|
||||
// Ensure tools are initialized
|
||||
const initResult = await this.ensureToolsInitialized();
|
||||
if (!initResult) {
|
||||
throw new Error('Failed to initialize tools');
|
||||
}
|
||||
} catch (error: unknown) {
|
||||
const errorMessage = error instanceof Error ? error.message : String(error);
|
||||
log.error(`Failed to initialize tools: ${errorMessage}`);
|
||||
throw new Error('Tool execution failed: No tools available');
|
||||
}
|
||||
}
|
||||
|
||||
// Execute each tool call and collect results
|
||||
const toolResults = await Promise.all(response.tool_calls.map(async (toolCall: any) => {
|
||||
try {
|
||||
log.info(`Executing tool: ${toolCall.function.name}, ID: ${toolCall.id || 'unknown'}`);
|
||||
|
||||
// Get the tool from registry
|
||||
const tool = toolRegistry.getTool(toolCall.function.name);
|
||||
if (!tool) {
|
||||
throw new Error(`Tool not found: ${toolCall.function.name}`);
|
||||
}
|
||||
|
||||
// Parse arguments
|
||||
let args;
|
||||
if (typeof toolCall.function.arguments === 'string') {
|
||||
try {
|
||||
args = JSON.parse(toolCall.function.arguments);
|
||||
} catch (e: unknown) {
|
||||
log.error(`Failed to parse tool arguments: ${e instanceof Error ? e.message : String(e)}`);
|
||||
|
||||
// Try cleanup and retry
|
||||
try {
|
||||
const cleaned = toolCall.function.arguments
|
||||
.replace(/^['"]|['"]$/g, '') // Remove surrounding quotes
|
||||
.replace(/\\"/g, '"') // Replace escaped quotes
|
||||
.replace(/([{,])\s*'([^']+)'\s*:/g, '$1"$2":') // Replace single quotes around property names
|
||||
.replace(/([{,])\s*(\w+)\s*:/g, '$1"$2":'); // Add quotes around unquoted property names
|
||||
|
||||
args = JSON.parse(cleaned);
|
||||
} catch (cleanErr) {
|
||||
// If all parsing fails, use as-is
|
||||
args = { text: toolCall.function.arguments };
|
||||
}
|
||||
}
|
||||
} else {
|
||||
args = toolCall.function.arguments;
|
||||
}
|
||||
|
||||
// Log what we're about to execute
|
||||
log.info(`Executing tool with arguments: ${JSON.stringify(args)}`);
|
||||
|
||||
// Execute the tool and get result
|
||||
const startTime = Date.now();
|
||||
const result = await tool.execute(args);
|
||||
const executionTime = Date.now() - startTime;
|
||||
|
||||
log.info(`Tool execution completed in ${executionTime}ms`);
|
||||
|
||||
// Log the result
|
||||
const resultPreview = typeof result === 'string'
|
||||
? result.substring(0, 100) + (result.length > 100 ? '...' : '')
|
||||
: JSON.stringify(result).substring(0, 100) + '...';
|
||||
log.info(`Tool result: ${resultPreview}`);
|
||||
|
||||
// Record tool execution in session if session ID is provided
|
||||
if (sessionId) {
|
||||
SessionsStore.recordToolExecution(sessionId, toolCall, typeof result === 'string' ? result : JSON.stringify(result));
|
||||
}
|
||||
|
||||
// Format result as a proper message
|
||||
return {
|
||||
role: 'tool',
|
||||
content: typeof result === 'string' ? result : JSON.stringify(result),
|
||||
name: toolCall.function.name,
|
||||
tool_call_id: toolCall.id || `tool-${Date.now()}-${Math.random().toString(36).substring(2, 9)}`
|
||||
};
|
||||
} catch (error: any) {
|
||||
log.error(`Error executing tool ${toolCall.function.name}: ${error.message}`);
|
||||
|
||||
// Record error in session if session ID is provided
|
||||
if (sessionId) {
|
||||
SessionsStore.recordToolExecution(sessionId, toolCall, '', error.message);
|
||||
}
|
||||
|
||||
// Return error as tool result
|
||||
return {
|
||||
role: 'tool',
|
||||
content: `Error: ${error.message}`,
|
||||
name: toolCall.function.name,
|
||||
tool_call_id: toolCall.id || `tool-${Date.now()}-${Math.random().toString(36).substring(2, 9)}`
|
||||
};
|
||||
}
|
||||
}));
|
||||
|
||||
log.info(`Completed execution of ${toolResults.length} tools`);
|
||||
return toolResults;
|
||||
} catch (error: any) {
|
||||
log.error(`Error in tool execution handler: ${error.message}`);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensure LLM tools are initialized
|
||||
*/
|
||||
static async ensureToolsInitialized(): Promise<boolean> {
|
||||
try {
|
||||
log.info("Checking LLM tool initialization...");
|
||||
|
||||
// Import tool registry
|
||||
const toolRegistry = (await import('../../tools/tool_registry.js')).default;
|
||||
|
||||
// Check if tools are already initialized
|
||||
const registeredTools = toolRegistry.getAllTools();
|
||||
|
||||
if (registeredTools.length === 0) {
|
||||
log.info("No tools found in registry.");
|
||||
log.info("Note: Tools should be initialized in the AIServiceManager constructor.");
|
||||
|
||||
// Create AI service manager instance to trigger tool initialization
|
||||
const aiServiceManager = (await import('../../ai_service_manager.js')).default;
|
||||
aiServiceManager.getInstance();
|
||||
|
||||
// Check again after AIServiceManager instantiation
|
||||
const tools = toolRegistry.getAllTools();
|
||||
log.info(`After AIServiceManager instantiation: ${tools.length} tools available`);
|
||||
} else {
|
||||
log.info(`LLM tools already initialized: ${registeredTools.length} tools available`);
|
||||
}
|
||||
|
||||
// Get all available tools for logging
|
||||
const availableTools = toolRegistry.getAllTools().map(t => t.definition.function.name);
|
||||
log.info(`Available tools: ${availableTools.join(', ')}`);
|
||||
|
||||
log.info("LLM tools initialized successfully: " + availableTools.length + " tools available");
|
||||
return true;
|
||||
} catch (error) {
|
||||
log.error(`Failed to initialize LLM tools: ${error}`);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
29
src/services/llm/chat/index.ts
Normal file
29
src/services/llm/chat/index.ts
Normal file
@ -0,0 +1,29 @@
|
||||
/**
|
||||
* Chat module export
|
||||
*/
|
||||
import restChatService from './rest-chat-service.js';
|
||||
import sessionsStore from './sessions-store.js';
|
||||
import { ContextHandler } from './handlers/context-handler.js';
|
||||
import { ToolHandler } from './handlers/tool-handler.js';
|
||||
import { StreamHandler } from './handlers/stream-handler.js';
|
||||
import * as messageFormatter from './utils/message-formatter.js';
|
||||
import type { ChatSession, ChatMessage, NoteSource } from './interfaces/session.js';
|
||||
import type { LLMStreamMessage } from './interfaces/ws-messages.js';
|
||||
|
||||
// Export components
|
||||
export {
|
||||
restChatService as default,
|
||||
sessionsStore,
|
||||
ContextHandler,
|
||||
ToolHandler,
|
||||
StreamHandler,
|
||||
messageFormatter
|
||||
};
|
||||
|
||||
// Export types
|
||||
export type {
|
||||
ChatSession,
|
||||
ChatMessage,
|
||||
NoteSource,
|
||||
LLMStreamMessage
|
||||
};
|
37
src/services/llm/chat/interfaces/session.ts
Normal file
37
src/services/llm/chat/interfaces/session.ts
Normal file
@ -0,0 +1,37 @@
|
||||
/**
|
||||
* Interfaces for chat sessions and related data
|
||||
*/
|
||||
import type { Message } from "../../ai_interface.js";
|
||||
|
||||
/**
|
||||
* Represents a source note from which context is drawn
|
||||
*/
|
||||
export interface NoteSource {
|
||||
noteId: string;
|
||||
title: string;
|
||||
content?: string;
|
||||
similarity?: number;
|
||||
branchId?: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Represents a chat session with message history
|
||||
*/
|
||||
export interface ChatSession {
|
||||
id: string;
|
||||
title: string;
|
||||
messages: ChatMessage[];
|
||||
createdAt: Date;
|
||||
lastActive: Date;
|
||||
noteContext?: string;
|
||||
metadata: Record<string, any>;
|
||||
}
|
||||
|
||||
/**
|
||||
* Represents a single chat message
|
||||
*/
|
||||
export interface ChatMessage {
|
||||
role: 'user' | 'assistant' | 'system';
|
||||
content: string;
|
||||
timestamp?: Date;
|
||||
}
|
24
src/services/llm/chat/interfaces/ws-messages.ts
Normal file
24
src/services/llm/chat/interfaces/ws-messages.ts
Normal file
@ -0,0 +1,24 @@
|
||||
/**
|
||||
* Interfaces for WebSocket LLM streaming messages
|
||||
*/
|
||||
|
||||
/**
|
||||
* Interface for WebSocket LLM streaming messages
|
||||
*/
|
||||
export interface LLMStreamMessage {
|
||||
type: 'llm-stream' | 'tool_execution_start' | 'tool_result' | 'tool_execution_error' | 'tool_completion_processing';
|
||||
sessionId: string;
|
||||
content?: string;
|
||||
thinking?: string;
|
||||
toolExecution?: {
|
||||
action?: string;
|
||||
tool?: string;
|
||||
toolCallId?: string;
|
||||
result?: string | Record<string, any>;
|
||||
error?: string;
|
||||
args?: Record<string, unknown>;
|
||||
};
|
||||
done?: boolean;
|
||||
error?: string;
|
||||
raw?: unknown;
|
||||
}
|
562
src/services/llm/chat/rest-chat-service.ts
Normal file
562
src/services/llm/chat/rest-chat-service.ts
Normal file
@ -0,0 +1,562 @@
|
||||
/**
|
||||
* Service to handle chat API interactions
|
||||
*/
|
||||
import log from "../../log.js";
|
||||
import type { Request, Response } from "express";
|
||||
import type { Message, ChatCompletionOptions } from "../ai_interface.js";
|
||||
import { AIServiceManager } from "../ai_service_manager.js";
|
||||
import { ChatPipeline } from "../pipeline/chat_pipeline.js";
|
||||
import type { ChatPipelineInput } from "../pipeline/interfaces.js";
|
||||
import options from "../../options.js";
|
||||
import { SEARCH_CONSTANTS } from '../constants/search_constants.js';
|
||||
|
||||
// Import our refactored modules
|
||||
import { ContextHandler } from "./handlers/context-handler.js";
|
||||
import { ToolHandler } from "./handlers/tool-handler.js";
|
||||
import { StreamHandler } from "./handlers/stream-handler.js";
|
||||
import SessionsStore from "./sessions-store.js";
|
||||
import * as MessageFormatter from "./utils/message-formatter.js";
|
||||
import type { NoteSource } from "./interfaces/session.js";
|
||||
import type { LLMStreamMessage } from "./interfaces/ws-messages.js";
|
||||
|
||||
/**
|
||||
* Service to handle chat API interactions
|
||||
*/
|
||||
class RestChatService {
|
||||
/**
|
||||
* Check if the database is initialized
|
||||
*/
|
||||
isDatabaseInitialized(): boolean {
|
||||
try {
|
||||
options.getOption('initialized');
|
||||
return true;
|
||||
} catch (error) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if AI services are available
|
||||
*/
|
||||
safelyUseAIManager(): boolean {
|
||||
// Only use AI manager if database is initialized
|
||||
if (!this.isDatabaseInitialized()) {
|
||||
log.info("AI check failed: Database is not initialized");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Try to access the manager - will create instance only if needed
|
||||
try {
|
||||
// Create local instance to avoid circular references
|
||||
const aiManager = new AIServiceManager();
|
||||
|
||||
if (!aiManager) {
|
||||
log.info("AI check failed: AI manager module is not available");
|
||||
return false;
|
||||
}
|
||||
|
||||
const isAvailable = aiManager.isAnyServiceAvailable();
|
||||
log.info(`AI service availability check result: ${isAvailable}`);
|
||||
|
||||
if (isAvailable) {
|
||||
// Additional diagnostics
|
||||
try {
|
||||
const providers = aiManager.getAvailableProviders();
|
||||
log.info(`Available AI providers: ${providers.join(', ')}`);
|
||||
} catch (err) {
|
||||
log.info(`Could not get available providers: ${err}`);
|
||||
}
|
||||
}
|
||||
|
||||
return isAvailable;
|
||||
} catch (error) {
|
||||
log.error(`Error accessing AI service manager: ${error}`);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle a message sent to an LLM and get a response
|
||||
*/
|
||||
async handleSendMessage(req: Request, res: Response) {
|
||||
log.info("=== Starting handleSendMessage ===");
|
||||
try {
|
||||
// Extract parameters differently based on the request method
|
||||
let content, useAdvancedContext, showThinking, sessionId;
|
||||
|
||||
if (req.method === 'POST') {
|
||||
// For POST requests, get content from the request body
|
||||
const requestBody = req.body || {};
|
||||
content = requestBody.content;
|
||||
useAdvancedContext = requestBody.useAdvancedContext || false;
|
||||
showThinking = requestBody.showThinking || false;
|
||||
|
||||
// Add logging for POST requests
|
||||
log.info(`LLM POST message: sessionId=${req.params.sessionId}, useAdvancedContext=${useAdvancedContext}, showThinking=${showThinking}, contentLength=${content ? content.length : 0}`);
|
||||
} else if (req.method === 'GET') {
|
||||
// For GET (streaming) requests, get parameters from query params and body
|
||||
// For streaming requests, we need the content from the body
|
||||
useAdvancedContext = req.query.useAdvancedContext === 'true' || (req.body && req.body.useAdvancedContext === true);
|
||||
showThinking = req.query.showThinking === 'true' || (req.body && req.body.showThinking === true);
|
||||
content = req.body && req.body.content ? req.body.content : '';
|
||||
|
||||
// Add detailed logging for GET requests
|
||||
log.info(`LLM GET stream: sessionId=${req.params.sessionId}, useAdvancedContext=${useAdvancedContext}, showThinking=${showThinking}`);
|
||||
log.info(`Parameters from query: useAdvancedContext=${req.query.useAdvancedContext}, showThinking=${req.query.showThinking}`);
|
||||
log.info(`Parameters from body: useAdvancedContext=${req.body?.useAdvancedContext}, showThinking=${req.body?.showThinking}, content=${content ? `${content.substring(0, 20)}...` : 'none'}`);
|
||||
}
|
||||
|
||||
// Get sessionId from URL params since it's part of the route
|
||||
sessionId = req.params.sessionId;
|
||||
|
||||
// For GET requests, ensure we have the stream parameter
|
||||
if (req.method === 'GET' && req.query.stream !== 'true') {
|
||||
throw new Error('Stream parameter must be set to true for GET/streaming requests');
|
||||
}
|
||||
|
||||
// For POST requests, validate the content
|
||||
if (req.method === 'POST' && (!content || typeof content !== 'string' || content.trim().length === 0)) {
|
||||
throw new Error('Content cannot be empty');
|
||||
}
|
||||
|
||||
// Check if session exists, create one if not
|
||||
let session = SessionsStore.getSession(sessionId);
|
||||
|
||||
if (!session) {
|
||||
if (req.method === 'GET') {
|
||||
// For GET requests, we must have an existing session
|
||||
throw new Error('Session not found');
|
||||
}
|
||||
|
||||
// For POST requests, we can create a new session automatically
|
||||
log.info(`Session ${sessionId} not found, creating a new one automatically`);
|
||||
session = SessionsStore.createSession({
|
||||
title: 'Auto-created Session'
|
||||
});
|
||||
log.info(`Created new session with ID: ${session.id}`);
|
||||
}
|
||||
|
||||
// Update session last active timestamp
|
||||
SessionsStore.touchSession(session.id);
|
||||
|
||||
// For POST requests, store the user message
|
||||
if (req.method === 'POST' && content) {
|
||||
// Add message to session
|
||||
session.messages.push({
|
||||
role: 'user',
|
||||
content,
|
||||
timestamp: new Date()
|
||||
});
|
||||
|
||||
// Log a preview of the message
|
||||
log.info(`Processing LLM message: "${content.substring(0, 50)}${content.length > 50 ? '...' : ''}"`);
|
||||
}
|
||||
|
||||
// Check if AI services are enabled before proceeding
|
||||
const aiEnabled = await options.getOptionBool('aiEnabled');
|
||||
log.info(`AI enabled setting: ${aiEnabled}`);
|
||||
if (!aiEnabled) {
|
||||
log.info("AI services are disabled by configuration");
|
||||
return {
|
||||
error: "AI features are disabled. Please enable them in the settings."
|
||||
};
|
||||
}
|
||||
|
||||
// Check if AI services are available
|
||||
log.info("Checking if AI services are available...");
|
||||
if (!this.safelyUseAIManager()) {
|
||||
log.info("AI services are not available - checking for specific issues");
|
||||
|
||||
try {
|
||||
// Create a direct instance to avoid circular references
|
||||
const aiManager = new AIServiceManager();
|
||||
|
||||
if (!aiManager) {
|
||||
log.error("AI service manager is not initialized");
|
||||
return {
|
||||
error: "AI service is not properly initialized. Please check your configuration."
|
||||
};
|
||||
}
|
||||
|
||||
const availableProviders = aiManager.getAvailableProviders();
|
||||
if (availableProviders.length === 0) {
|
||||
log.error("No AI providers are available");
|
||||
return {
|
||||
error: "No AI providers are configured or available. Please check your AI settings."
|
||||
};
|
||||
}
|
||||
} catch (err) {
|
||||
log.error(`Detailed AI service check failed: ${err}`);
|
||||
}
|
||||
|
||||
return {
|
||||
error: "AI services are currently unavailable. Please check your configuration."
|
||||
};
|
||||
}
|
||||
|
||||
// Create direct instance to avoid circular references
|
||||
const aiManager = new AIServiceManager();
|
||||
|
||||
// Get the default service - just use the first available one
|
||||
const availableProviders = aiManager.getAvailableProviders();
|
||||
|
||||
if (availableProviders.length === 0) {
|
||||
log.error("No AI providers are available after manager check");
|
||||
return {
|
||||
error: "No AI providers are configured or available. Please check your AI settings."
|
||||
};
|
||||
}
|
||||
|
||||
// Use the first available provider
|
||||
const providerName = availableProviders[0];
|
||||
log.info(`Using AI provider: ${providerName}`);
|
||||
|
||||
// We know the manager has a 'services' property from our code inspection,
|
||||
// but TypeScript doesn't know that from the interface.
|
||||
// This is a workaround to access it
|
||||
const service = (aiManager as any).services[providerName];
|
||||
|
||||
if (!service) {
|
||||
log.error(`AI service for provider ${providerName} not found`);
|
||||
return {
|
||||
error: `Selected AI provider (${providerName}) is not available. Please check your configuration.`
|
||||
};
|
||||
}
|
||||
|
||||
// Initialize tools
|
||||
log.info("Initializing LLM agent tools...");
|
||||
// Ensure tools are initialized to prevent tool execution issues
|
||||
await ToolHandler.ensureToolsInitialized();
|
||||
|
||||
// Create and use the chat pipeline instead of direct processing
|
||||
const pipeline = new ChatPipeline({
|
||||
enableStreaming: req.method === 'GET',
|
||||
enableMetrics: true,
|
||||
maxToolCallIterations: 5
|
||||
});
|
||||
|
||||
log.info("Executing chat pipeline...");
|
||||
|
||||
// Create options object for better tracking
|
||||
const pipelineOptions = {
|
||||
// Force useAdvancedContext to be a boolean, no matter what
|
||||
useAdvancedContext: useAdvancedContext === true,
|
||||
systemPrompt: session.messages.find(m => m.role === 'system')?.content,
|
||||
temperature: session.metadata.temperature,
|
||||
maxTokens: session.metadata.maxTokens,
|
||||
model: session.metadata.model,
|
||||
// Set stream based on request type, but ensure it's explicitly a boolean value
|
||||
// GET requests or format=stream parameter indicates streaming should be used
|
||||
stream: !!(req.method === 'GET' || req.query.format === 'stream' || req.query.stream === 'true'),
|
||||
// Include sessionId for tracking tool executions
|
||||
sessionId: sessionId
|
||||
};
|
||||
|
||||
// Log the options to verify what's being sent to the pipeline
|
||||
log.info(`Pipeline input options: ${JSON.stringify({
|
||||
useAdvancedContext: pipelineOptions.useAdvancedContext,
|
||||
stream: pipelineOptions.stream
|
||||
})}`);
|
||||
|
||||
// Import the WebSocket service for direct access
|
||||
const wsService = await import('../../ws.js');
|
||||
|
||||
// Create a stream callback wrapper
|
||||
// This will ensure we properly handle all streaming messages
|
||||
let messageContent = '';
|
||||
|
||||
// Prepare the pipeline input
|
||||
const pipelineInput: ChatPipelineInput = {
|
||||
messages: session.messages.map(msg => ({
|
||||
role: msg.role as 'user' | 'assistant' | 'system',
|
||||
content: msg.content
|
||||
})),
|
||||
query: content,
|
||||
noteId: session.noteContext ?? undefined,
|
||||
showThinking: showThinking,
|
||||
options: pipelineOptions,
|
||||
streamCallback: req.method === 'GET' ? (data, done, rawChunk) => {
|
||||
try {
|
||||
// Use WebSocket service to send messages
|
||||
this.handleStreamCallback(
|
||||
data, done, rawChunk,
|
||||
wsService.default, sessionId,
|
||||
messageContent, session, res
|
||||
);
|
||||
} catch (error) {
|
||||
log.error(`Error in stream callback: ${error}`);
|
||||
|
||||
// Try to send error message
|
||||
try {
|
||||
wsService.default.sendMessageToAllClients({
|
||||
type: 'llm-stream',
|
||||
sessionId,
|
||||
error: `Stream error: ${error instanceof Error ? error.message : 'Unknown error'}`,
|
||||
done: true
|
||||
});
|
||||
|
||||
// End the response
|
||||
res.write(`data: ${JSON.stringify({ error: 'Stream error', done: true })}\n\n`);
|
||||
res.end();
|
||||
} catch (e) {
|
||||
log.error(`Failed to send error message: ${e}`);
|
||||
}
|
||||
}
|
||||
} : undefined
|
||||
};
|
||||
|
||||
// Execute the pipeline
|
||||
const response = await pipeline.execute(pipelineInput);
|
||||
|
||||
// Handle the response
|
||||
if (req.method === 'POST') {
|
||||
// Add assistant message to session
|
||||
session.messages.push({
|
||||
role: 'assistant',
|
||||
content: response.text || '',
|
||||
timestamp: new Date()
|
||||
});
|
||||
|
||||
// Extract sources if they're available
|
||||
const sources = (response as any).sources || [];
|
||||
|
||||
// Store sources in the session metadata if they're present
|
||||
if (sources.length > 0) {
|
||||
session.metadata.sources = sources;
|
||||
log.info(`Stored ${sources.length} sources in session metadata`);
|
||||
}
|
||||
|
||||
// Return the response with complete metadata
|
||||
return {
|
||||
content: response.text || '',
|
||||
sources: sources,
|
||||
metadata: {
|
||||
model: response.model || session.metadata.model,
|
||||
provider: response.provider || session.metadata.provider,
|
||||
temperature: session.metadata.temperature,
|
||||
maxTokens: session.metadata.maxTokens,
|
||||
lastUpdated: new Date().toISOString(),
|
||||
toolExecutions: session.metadata.toolExecutions || []
|
||||
}
|
||||
};
|
||||
} else {
|
||||
// For streaming requests, we've already sent the response
|
||||
return null;
|
||||
}
|
||||
} catch (processingError: any) {
|
||||
log.error(`Error processing message: ${processingError}`);
|
||||
return {
|
||||
error: `Error processing your request: ${processingError.message}`
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle stream callback for WebSocket communication
|
||||
*/
|
||||
private handleStreamCallback(
|
||||
data: string | null,
|
||||
done: boolean,
|
||||
rawChunk: any,
|
||||
wsService: any,
|
||||
sessionId: string,
|
||||
messageContent: string,
|
||||
session: any,
|
||||
res: Response
|
||||
) {
|
||||
// Only accumulate content that's actually text (not tool execution or thinking info)
|
||||
if (data) {
|
||||
messageContent += data;
|
||||
}
|
||||
|
||||
// Create a message object with all necessary fields
|
||||
const message: LLMStreamMessage = {
|
||||
type: 'llm-stream',
|
||||
sessionId
|
||||
};
|
||||
|
||||
// Add content if available - either the new chunk or full content on completion
|
||||
if (data) {
|
||||
message.content = data;
|
||||
}
|
||||
|
||||
// Add thinking info if available in the raw chunk
|
||||
if (rawChunk && 'thinking' in rawChunk && rawChunk.thinking) {
|
||||
message.thinking = rawChunk.thinking as string;
|
||||
}
|
||||
|
||||
// Add tool execution info if available in the raw chunk
|
||||
if (rawChunk && 'toolExecution' in rawChunk && rawChunk.toolExecution) {
|
||||
// Transform the toolExecution to match the expected format
|
||||
const toolExec = rawChunk.toolExecution;
|
||||
message.toolExecution = {
|
||||
// Use optional chaining for all properties
|
||||
tool: typeof toolExec.tool === 'string'
|
||||
? toolExec.tool
|
||||
: toolExec.tool?.name,
|
||||
result: toolExec.result,
|
||||
// Map arguments to args
|
||||
args: 'arguments' in toolExec ?
|
||||
(typeof toolExec.arguments === 'object' ?
|
||||
toolExec.arguments as Record<string, unknown> : {}) : {},
|
||||
// Add additional properties if they exist
|
||||
action: 'action' in toolExec ? toolExec.action as string : undefined,
|
||||
toolCallId: 'toolCallId' in toolExec ? toolExec.toolCallId as string : undefined,
|
||||
error: 'error' in toolExec ? toolExec.error as string : undefined
|
||||
};
|
||||
}
|
||||
|
||||
// Set done flag explicitly
|
||||
message.done = done;
|
||||
|
||||
// On final message, include the complete content too
|
||||
if (done) {
|
||||
// Store the response in the session when done
|
||||
session.messages.push({
|
||||
role: 'assistant',
|
||||
content: messageContent,
|
||||
timestamp: new Date()
|
||||
});
|
||||
}
|
||||
|
||||
// Send message to all clients
|
||||
wsService.sendMessageToAllClients(message);
|
||||
|
||||
// Log what was sent (first message and completion)
|
||||
if (message.thinking || done) {
|
||||
log.info(
|
||||
`[WS-SERVER] Sending LLM stream message: sessionId=${sessionId}, content=${!!message.content}, contentLength=${message.content?.length || 0}, thinking=${!!message.thinking}, toolExecution=${!!message.toolExecution}, done=${done}`
|
||||
);
|
||||
}
|
||||
|
||||
// For GET requests, also send as server-sent events
|
||||
// Prepare response data for JSON event
|
||||
const responseData: any = {
|
||||
content: data,
|
||||
done
|
||||
};
|
||||
|
||||
// Add tool execution if available
|
||||
if (rawChunk?.toolExecution) {
|
||||
responseData.toolExecution = rawChunk.toolExecution;
|
||||
}
|
||||
|
||||
// Send the data as a JSON event
|
||||
res.write(`data: ${JSON.stringify(responseData)}\n\n`);
|
||||
|
||||
if (done) {
|
||||
res.end();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new chat session
|
||||
*/
|
||||
async createSession(req: Request, res: Response) {
|
||||
try {
|
||||
const options: any = req.body || {};
|
||||
const title = options.title || 'Chat Session';
|
||||
|
||||
// Create a new session through our session store
|
||||
const session = SessionsStore.createSession({
|
||||
title,
|
||||
systemPrompt: options.systemPrompt,
|
||||
contextNoteId: options.contextNoteId,
|
||||
maxTokens: options.maxTokens,
|
||||
model: options.model,
|
||||
provider: options.provider,
|
||||
temperature: options.temperature
|
||||
});
|
||||
|
||||
return {
|
||||
id: session.id,
|
||||
title: session.title,
|
||||
createdAt: session.createdAt
|
||||
};
|
||||
} catch (error: any) {
|
||||
log.error(`Error creating LLM session: ${error.message || 'Unknown error'}`);
|
||||
throw new Error(`Failed to create LLM session: ${error.message || 'Unknown error'}`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get a specific chat session by ID
|
||||
*/
|
||||
async getSession(req: Request, res: Response) {
|
||||
try {
|
||||
const { sessionId } = req.params;
|
||||
|
||||
// Check if session exists
|
||||
const session = SessionsStore.getSession(sessionId);
|
||||
if (!session) {
|
||||
// Instead of throwing an error, return a structured 404 response
|
||||
// that the frontend can handle gracefully
|
||||
res.status(404).json({
|
||||
error: true,
|
||||
message: `Session with ID ${sessionId} not found`,
|
||||
code: 'session_not_found',
|
||||
sessionId
|
||||
});
|
||||
return null; // Return null to prevent further processing
|
||||
}
|
||||
|
||||
// Return session with metadata and additional fields
|
||||
return {
|
||||
id: session.id,
|
||||
title: session.title,
|
||||
createdAt: session.createdAt,
|
||||
lastActive: session.lastActive,
|
||||
messages: session.messages,
|
||||
noteContext: session.noteContext,
|
||||
// Include additional fields for the frontend
|
||||
sources: session.metadata.sources || [],
|
||||
metadata: {
|
||||
model: session.metadata.model,
|
||||
provider: session.metadata.provider,
|
||||
temperature: session.metadata.temperature,
|
||||
maxTokens: session.metadata.maxTokens,
|
||||
lastUpdated: session.lastActive.toISOString(),
|
||||
// Include simplified tool executions if available
|
||||
toolExecutions: session.metadata.toolExecutions || []
|
||||
}
|
||||
};
|
||||
} catch (error: any) {
|
||||
log.error(`Error getting LLM session: ${error.message || 'Unknown error'}`);
|
||||
throw new Error(`Failed to get session: ${error.message || 'Unknown error'}`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Delete a chat session
|
||||
*/
|
||||
async deleteSession(req: Request, res: Response) {
|
||||
try {
|
||||
const { sessionId } = req.params;
|
||||
|
||||
// Delete the session
|
||||
const success = SessionsStore.deleteSession(sessionId);
|
||||
if (!success) {
|
||||
throw new Error(`Session with ID ${sessionId} not found`);
|
||||
}
|
||||
|
||||
return {
|
||||
success: true,
|
||||
message: `Session ${sessionId} deleted successfully`
|
||||
};
|
||||
} catch (error: any) {
|
||||
log.error(`Error deleting LLM session: ${error.message || 'Unknown error'}`);
|
||||
throw new Error(`Failed to delete session: ${error.message || 'Unknown error'}`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all sessions
|
||||
*/
|
||||
getSessions() {
|
||||
return SessionsStore.getAllSessions();
|
||||
}
|
||||
}
|
||||
|
||||
// Create singleton instance
|
||||
const restChatService = new RestChatService();
|
||||
export default restChatService;
|
168
src/services/llm/chat/sessions-store.ts
Normal file
168
src/services/llm/chat/sessions-store.ts
Normal file
@ -0,0 +1,168 @@
|
||||
/**
|
||||
* In-memory storage for chat sessions
|
||||
*/
|
||||
import log from "../../log.js";
|
||||
import { LLM_CONSTANTS } from '../constants/provider_constants.js';
|
||||
import { SEARCH_CONSTANTS } from '../constants/search_constants.js';
|
||||
import { randomString } from "../../utils.js";
|
||||
import type { ChatSession, ChatMessage } from './interfaces/session.js';
|
||||
|
||||
// In-memory storage for sessions
|
||||
const sessions = new Map<string, ChatSession>();
|
||||
|
||||
// Flag to track if cleanup timer has been initialized
|
||||
let cleanupInitialized = false;
|
||||
|
||||
/**
|
||||
* Provides methods to manage chat sessions
|
||||
*/
|
||||
class SessionsStore {
|
||||
/**
|
||||
* Initialize the session cleanup timer to remove old/inactive sessions
|
||||
*/
|
||||
initializeCleanupTimer(): void {
|
||||
if (cleanupInitialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Clean sessions that have expired based on the constants
|
||||
function cleanupOldSessions() {
|
||||
const expiryTime = new Date(Date.now() - LLM_CONSTANTS.SESSION.SESSION_EXPIRY_MS);
|
||||
for (const [sessionId, session] of sessions.entries()) {
|
||||
if (session.lastActive < expiryTime) {
|
||||
sessions.delete(sessionId);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Run cleanup at the configured interval
|
||||
setInterval(cleanupOldSessions, LLM_CONSTANTS.SESSION.CLEANUP_INTERVAL_MS);
|
||||
cleanupInitialized = true;
|
||||
log.info("Session cleanup timer initialized");
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all sessions
|
||||
*/
|
||||
getAllSessions(): Map<string, ChatSession> {
|
||||
return sessions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get a specific session by ID
|
||||
*/
|
||||
getSession(sessionId: string): ChatSession | undefined {
|
||||
return sessions.get(sessionId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new session
|
||||
*/
|
||||
createSession(options: {
|
||||
title?: string;
|
||||
systemPrompt?: string;
|
||||
contextNoteId?: string;
|
||||
maxTokens?: number;
|
||||
model?: string;
|
||||
provider?: string;
|
||||
temperature?: number;
|
||||
}): ChatSession {
|
||||
this.initializeCleanupTimer();
|
||||
|
||||
const title = options.title || 'Chat Session';
|
||||
const sessionId = randomString(16);
|
||||
const now = new Date();
|
||||
|
||||
// Initial system message if provided
|
||||
const messages: ChatMessage[] = [];
|
||||
if (options.systemPrompt) {
|
||||
messages.push({
|
||||
role: 'system',
|
||||
content: options.systemPrompt,
|
||||
timestamp: now
|
||||
});
|
||||
}
|
||||
|
||||
// Create and store the session
|
||||
const session: ChatSession = {
|
||||
id: sessionId,
|
||||
title,
|
||||
messages,
|
||||
createdAt: now,
|
||||
lastActive: now,
|
||||
noteContext: options.contextNoteId,
|
||||
metadata: {
|
||||
temperature: options.temperature || SEARCH_CONSTANTS.TEMPERATURE.DEFAULT,
|
||||
maxTokens: options.maxTokens,
|
||||
model: options.model,
|
||||
provider: options.provider,
|
||||
sources: [],
|
||||
toolExecutions: [],
|
||||
lastUpdated: now.toISOString()
|
||||
}
|
||||
};
|
||||
|
||||
sessions.set(sessionId, session);
|
||||
log.info(`Created new session with ID: ${sessionId}`);
|
||||
|
||||
return session;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update a session's last active timestamp
|
||||
*/
|
||||
touchSession(sessionId: string): boolean {
|
||||
const session = sessions.get(sessionId);
|
||||
if (!session) {
|
||||
return false;
|
||||
}
|
||||
|
||||
session.lastActive = new Date();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Delete a session
|
||||
*/
|
||||
deleteSession(sessionId: string): boolean {
|
||||
return sessions.delete(sessionId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Record a tool execution in the session metadata
|
||||
*/
|
||||
recordToolExecution(sessionId: string, tool: any, result: string, error?: string): void {
|
||||
if (!sessionId) return;
|
||||
|
||||
const session = sessions.get(sessionId);
|
||||
if (!session) return;
|
||||
|
||||
try {
|
||||
const toolExecutions = session.metadata.toolExecutions || [];
|
||||
|
||||
// Format tool execution record
|
||||
const execution = {
|
||||
id: tool.id || `tool-${Date.now()}-${Math.random().toString(36).substring(2, 7)}`,
|
||||
name: tool.function?.name || 'unknown',
|
||||
arguments: typeof tool.function?.arguments === 'string'
|
||||
? (() => { try { return JSON.parse(tool.function.arguments); } catch { return tool.function.arguments; } })()
|
||||
: tool.function?.arguments || {},
|
||||
result: result,
|
||||
error: error,
|
||||
timestamp: new Date().toISOString()
|
||||
};
|
||||
|
||||
// Add to tool executions
|
||||
toolExecutions.push(execution);
|
||||
session.metadata.toolExecutions = toolExecutions;
|
||||
|
||||
log.info(`Recorded tool execution for ${execution.name} in session ${sessionId}`);
|
||||
} catch (err) {
|
||||
log.error(`Failed to record tool execution: ${err}`);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create singleton instance
|
||||
const sessionsStore = new SessionsStore();
|
||||
export default sessionsStore;
|
121
src/services/llm/chat/utils/message-formatter.ts
Normal file
121
src/services/llm/chat/utils/message-formatter.ts
Normal file
@ -0,0 +1,121 @@
|
||||
/**
|
||||
* Message formatting utilities for different LLM providers
|
||||
*/
|
||||
import type { Message } from "../../ai_interface.js";
|
||||
|
||||
/**
|
||||
* Interface for message formatters
|
||||
*/
|
||||
interface MessageFormatter {
|
||||
formatMessages(messages: Message[], systemPrompt?: string, context?: string): Message[];
|
||||
}
|
||||
|
||||
/**
|
||||
* Factory to get the appropriate message formatter for a given provider
|
||||
*/
|
||||
export function getFormatter(providerName: string): MessageFormatter {
|
||||
// Currently we use a simple implementation that works for most providers
|
||||
// In the future, this could be expanded to have provider-specific formatters
|
||||
return {
|
||||
formatMessages(messages: Message[], systemPrompt?: string, context?: string): Message[] {
|
||||
// Simple implementation that works for most providers
|
||||
const formattedMessages: Message[] = [];
|
||||
|
||||
// Add system message if context or systemPrompt is provided
|
||||
if (context || systemPrompt) {
|
||||
formattedMessages.push({
|
||||
role: 'system',
|
||||
content: systemPrompt || (context ? `Use the following context to answer the query: ${context}` : '')
|
||||
});
|
||||
}
|
||||
|
||||
// Add all other messages
|
||||
for (const message of messages) {
|
||||
if (message.role === 'system' && formattedMessages.some(m => m.role === 'system')) {
|
||||
// Skip duplicate system messages
|
||||
continue;
|
||||
}
|
||||
formattedMessages.push(message);
|
||||
}
|
||||
|
||||
return formattedMessages;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Build messages with context for a specific LLM provider
|
||||
*/
|
||||
export async function buildMessagesWithContext(
|
||||
messages: Message[],
|
||||
context: string,
|
||||
llmService: any
|
||||
): Promise<Message[]> {
|
||||
try {
|
||||
if (!messages || messages.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
if (!context || context.trim() === '') {
|
||||
return messages;
|
||||
}
|
||||
|
||||
// Get the provider name, handling service classes and raw provider names
|
||||
let providerName: string;
|
||||
if (typeof llmService === 'string') {
|
||||
// If llmService is a string, assume it's the provider name
|
||||
providerName = llmService;
|
||||
} else if (llmService.constructor && llmService.constructor.name) {
|
||||
// Extract provider name from service class name (e.g., OllamaService -> ollama)
|
||||
providerName = llmService.constructor.name.replace('Service', '').toLowerCase();
|
||||
} else {
|
||||
// Fallback to default
|
||||
providerName = 'default';
|
||||
}
|
||||
|
||||
// Get the appropriate formatter for this provider
|
||||
const formatter = getFormatter(providerName);
|
||||
|
||||
// Format messages with context using the provider-specific formatter
|
||||
const formattedMessages = formatter.formatMessages(
|
||||
messages,
|
||||
undefined, // No system prompt override - use what's in the messages
|
||||
context
|
||||
);
|
||||
|
||||
return formattedMessages;
|
||||
} catch (error) {
|
||||
console.error(`Error building messages with context: ${error}`);
|
||||
// Fallback to original messages in case of error
|
||||
return messages;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Build context from a list of note sources and a query
|
||||
*/
|
||||
export function buildContextFromNotes(sources: any[], query: string): string {
|
||||
if (!sources || sources.length === 0) {
|
||||
return query || '';
|
||||
}
|
||||
|
||||
const noteContexts = sources
|
||||
.filter(source => source.content) // Only include sources with content
|
||||
.map((source) => {
|
||||
// Format each note with its title as a natural heading and wrap in <note> tags
|
||||
return `<note>\n### ${source.title}\n${source.content || 'No content available'}\n</note>`;
|
||||
})
|
||||
.join('\n\n');
|
||||
|
||||
if (!noteContexts) {
|
||||
return query || '';
|
||||
}
|
||||
|
||||
// Import the CONTEXT_PROMPTS constant
|
||||
const { CONTEXT_PROMPTS } = require('../../constants/llm_prompt_constants.js');
|
||||
|
||||
// Use the template from the constants file, replacing placeholders
|
||||
return CONTEXT_PROMPTS.CONTEXT_NOTES_WRAPPER
|
||||
.replace('{noteContexts}', noteContexts)
|
||||
.replace('{query}', query);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user