getting closer to streaming?

even closer?

closer streaming...

this is darn close
This commit is contained in:
perf3ct 2025-04-10 21:00:12 +00:00
parent b68ff88840
commit 451e5ea31f
No known key found for this signature in database
GPG Key ID: 569C4EEC436F5232
12 changed files with 1484 additions and 562 deletions

View File

@ -127,6 +127,49 @@ async function handleMessage(event: MessageEvent<any>) {
appContext.triggerEvent("apiLogMessages", { noteId: message.noteId, messages: message.messages });
} else if (message.type === "toast") {
toastService.showMessage(message.message);
} else if (message.type === "llm-stream") {
// ENHANCED LOGGING FOR DEBUGGING
console.log(`[WS-CLIENT] >>> RECEIVED LLM STREAM MESSAGE <<<`);
console.log(`[WS-CLIENT] Message details: sessionId=${message.sessionId}, hasContent=${!!message.content}, contentLength=${message.content ? message.content.length : 0}, hasThinking=${!!message.thinking}, hasToolExecution=${!!message.toolExecution}, isDone=${!!message.done}`);
if (message.content) {
console.log(`[WS-CLIENT] CONTENT PREVIEW: "${message.content.substring(0, 50)}..."`);
}
// Create the event with detailed logging
console.log(`[WS-CLIENT] Creating CustomEvent 'llm-stream-message'`);
const llmStreamEvent = new CustomEvent('llm-stream-message', { detail: message });
// Dispatch to multiple targets to ensure delivery
try {
console.log(`[WS-CLIENT] Dispatching event to window`);
window.dispatchEvent(llmStreamEvent);
console.log(`[WS-CLIENT] Event dispatched to window`);
// Also try document for completeness
console.log(`[WS-CLIENT] Dispatching event to document`);
document.dispatchEvent(new CustomEvent('llm-stream-message', { detail: message }));
console.log(`[WS-CLIENT] Event dispatched to document`);
} catch (err) {
console.error(`[WS-CLIENT] Error dispatching event:`, err);
}
// Debug current listeners (though we can't directly check for specific event listeners)
console.log(`[WS-CLIENT] Active event listeners should receive this message now`);
// Detailed logging based on message type
if (message.content) {
console.log(`[WS-CLIENT] Content message: ${message.content.length} chars`);
} else if (message.thinking) {
console.log(`[WS-CLIENT] Thinking update: "${message.thinking}"`);
} else if (message.toolExecution) {
console.log(`[WS-CLIENT] Tool execution: action=${message.toolExecution.action}, tool=${message.toolExecution.tool || 'unknown'}`);
if (message.toolExecution.result) {
console.log(`[WS-CLIENT] Tool result preview: "${String(message.toolExecution.result).substring(0, 50)}..."`);
}
} else if (message.done) {
console.log(`[WS-CLIENT] Completion signal received`);
}
} else if (message.type === "execute-script") {
// TODO: Remove after porting the file
// @ts-ignore

View File

@ -7,6 +7,7 @@ import { t } from "../services/i18n.js";
import libraryLoader from "../services/library_loader.js";
import { applySyntaxHighlight } from "../services/syntax_highlight.js";
import options from "../services/options.js";
import ws from "../services/ws.js";
import { marked } from "marked";
// Import the LLM Chat CSS
@ -105,6 +106,8 @@ export default class LlmChatPanel extends BasicWidget {
private validationWarning!: HTMLElement;
private sessionId: string | null = null;
private currentNoteId: string | null = null;
private _messageHandlerId: number | null = null;
private _messageHandler: any = null;
// Callbacks for data persistence
private onSaveData: ((data: any) => Promise<void>) | null = null;
@ -178,6 +181,15 @@ export default class LlmChatPanel extends BasicWidget {
return this.$widget;
}
cleanup() {
console.log(`LlmChatPanel cleanup called, removing any active WebSocket subscriptions`);
// No need to manually clean up the event listeners, as they will be garbage collected
// when the component is destroyed. We only need to clean up references.
this._messageHandler = null;
this._messageHandlerId = null;
}
/**
* Set the callbacks for data persistence
*/
@ -375,16 +387,15 @@ export default class LlmChatPanel extends BasicWidget {
// Create the message parameters
const messageParams = {
content,
contextNoteId: this.currentNoteId,
useAdvancedContext,
showThinking
};
// First try to use streaming (preferred method)
// Try websocket streaming (preferred method)
try {
await this.setupStreamingResponse(messageParams);
} catch (streamingError) {
console.warn("Streaming request failed, falling back to direct response:", streamingError);
console.warn("WebSocket streaming failed, falling back to direct response:", streamingError);
// If streaming fails, fall back to direct response
const handled = await this.handleDirectResponse(messageParams);
@ -424,12 +435,14 @@ export default class LlmChatPanel extends BasicWidget {
*/
private async handleDirectResponse(messageParams: any): Promise<boolean> {
try {
// Add format parameter to maintain consistency with the streaming GET request
// Create a copy of the params without any streaming flags
const postParams = {
...messageParams,
format: 'stream' // Match the format parameter used in the GET streaming request
stream: false // Explicitly set to false to ensure we get a direct response
};
console.log(`Sending direct POST request for session ${this.sessionId}`);
// Send the message via POST request with the updated params
const postResponse = await server.post<any>(`llm/sessions/${this.sessionId}/messages`, postParams);
@ -474,184 +487,318 @@ export default class LlmChatPanel extends BasicWidget {
}
/**
* Set up streaming response from the server
* Set up streaming response via WebSocket
*/
private async setupStreamingResponse(messageParams: any): Promise<void> {
const content = messageParams.content || '';
const useAdvancedContext = messageParams.useAdvancedContext;
const showThinking = messageParams.showThinking;
// Set up streaming via EventSource - explicitly add stream=true parameter to ensure consistency
const streamUrl = `./api/llm/sessions/${this.sessionId}/messages?format=stream&stream=true&useAdvancedContext=${useAdvancedContext}&showThinking=${showThinking}`;
return new Promise((resolve, reject) => {
const source = new EventSource(streamUrl);
let assistantResponse = '';
let receivedAnyContent = false;
let timeoutId: number | null = null;
let initialTimeoutId: number | null = null;
let receivedAnyMessage = false;
let eventListener: ((event: Event) => void) | null = null;
// Set up timeout for streaming response
timeoutId = this.setupStreamingTimeout(source);
// Create a unique identifier for this response process
const responseId = `llm-stream-${Date.now()}-${Math.floor(Math.random() * 1000)}`;
console.log(`[${responseId}] Setting up WebSocket streaming for session ${this.sessionId}`);
// Handle streaming response
source.onmessage = (event) => {
try {
if (event.data === '[DONE]') {
// Stream completed successfully
this.handleStreamingComplete(source, timeoutId, receivedAnyContent, assistantResponse);
resolve();
// Create a message handler for CustomEvents
eventListener = (event: Event) => {
const customEvent = event as CustomEvent;
const message = customEvent.detail;
// Only process messages for our session
if (!message || message.sessionId !== this.sessionId) {
return;
}
const data = JSON.parse(event.data);
console.log("Received streaming data:", data);
console.log(`[${responseId}] LLM Stream message received via CustomEvent: session=${this.sessionId}, content=${!!message.content}, contentLength=${message.content?.length || 0}, thinking=${!!message.thinking}, toolExecution=${!!message.toolExecution}, done=${!!message.done}`);
// Handle both content and error cases
if (data.content) {
// Mark first message received
if (!receivedAnyMessage) {
receivedAnyMessage = true;
console.log(`[${responseId}] First message received for session ${this.sessionId}`);
// Clear the initial timeout since we've received a message
if (initialTimeoutId !== null) {
window.clearTimeout(initialTimeoutId);
initialTimeoutId = null;
}
}
// Handle content updates
if (message.content) {
receivedAnyContent = true;
assistantResponse += data.content;
assistantResponse += message.content;
// Update the UI with the accumulated response
// Update the UI immediately
this.updateStreamingUI(assistantResponse);
} else if (data.toolExecution) {
// Handle tool execution info
this.showToolExecutionInfo(data.toolExecution);
// When tool execution info is received, also show the loading indicator
// in case it's not already visible
this.loadingIndicator.style.display = 'flex';
} else if (data.error) {
// Handle error message
this.hideLoadingIndicator();
this.addMessageToChat('assistant', `Error: ${data.error}`);
// Reset timeout since we got content
if (timeoutId !== null) {
window.clearTimeout(timeoutId);
}
source.close();
reject(new Error(data.error));
return;
}
// Set new timeout
timeoutId = window.setTimeout(() => {
console.warn(`[${responseId}] Stream timeout for session ${this.sessionId}`);
// Scroll to the bottom
this.chatContainer.scrollTop = this.chatContainer.scrollHeight;
} catch (e) {
console.error('Error parsing SSE message:', e, 'Raw data:', event.data);
reject(e);
}
};
// Handle streaming errors
source.onerror = (err) => {
console.error("EventSource error:", err);
source.close();
this.hideLoadingIndicator();
// Clear the timeout if there was an error
if (timeoutId !== null) {
window.clearTimeout(timeoutId);
}
// Only reject if we haven't received any content yet
if (!receivedAnyContent) {
reject(new Error('Error connecting to the LLM streaming service'));
} else {
// If we've already received some content, consider it a successful but incomplete response
this.handleStreamingComplete(source, timeoutId, receivedAnyContent, assistantResponse);
resolve();
}
};
// Save what we have
if (assistantResponse) {
console.log(`[${responseId}] Saving partial response due to timeout (${assistantResponse.length} chars)`);
this.messages.push({
role: 'assistant',
content: assistantResponse,
timestamp: new Date()
});
this.saveCurrentData().catch(err => {
console.error(`[${responseId}] Failed to save partial response:`, err);
});
}
/**
* Set up timeout for streaming response
* @returns Timeout ID for the created timeout
*/
private setupStreamingTimeout(source: EventSource): number {
// Set a timeout to handle case where streaming doesn't work properly
return window.setTimeout(() => {
// If we haven't received any content after a reasonable timeout (10 seconds),
// add a fallback message and close the stream
// Clean up
this.cleanupEventListener(eventListener);
this.hideLoadingIndicator();
const errorMessage = 'I\'m having trouble generating a response right now. Please try again later.';
this.processAssistantResponse(errorMessage);
source.close();
}, 10000);
reject(new Error('Stream timeout'));
}, 30000);
}
/**
* Update the UI with streaming content as it arrives
*/
private updateStreamingUI(assistantResponse: string) {
const assistantElement = this.noteContextChatMessages.querySelector('.assistant-message:last-child .message-content');
if (assistantElement) {
assistantElement.innerHTML = this.formatMarkdown(assistantResponse);
// Apply syntax highlighting to any code blocks in the updated content
applySyntaxHighlight($(assistantElement as HTMLElement));
} else {
this.addMessageToChat('assistant', assistantResponse);
}
// Handle tool execution updates
if (message.toolExecution) {
console.log(`[${responseId}] Received tool execution update: action=${message.toolExecution.action || 'unknown'}`);
this.showToolExecutionInfo(message.toolExecution);
this.loadingIndicator.style.display = 'flex';
}
/**
* Handle completion of streaming response
*/
private handleStreamingComplete(
source: EventSource,
timeoutId: number | null,
receivedAnyContent: boolean,
assistantResponse: string
) {
// Stream completed
source.close();
this.hideLoadingIndicator();
// Handle thinking state updates
if (message.thinking) {
console.log(`[${responseId}] Received thinking update: ${message.thinking.substring(0, 50)}...`);
this.showThinkingState(message.thinking);
this.loadingIndicator.style.display = 'flex';
}
// Clear the timeout since we're done
// Handle completion
if (message.done) {
console.log(`[${responseId}] Stream completed for session ${this.sessionId}, has content: ${!!message.content}, content length: ${message.content?.length || 0}, current response: ${assistantResponse.length} chars`);
// Dump message content to console for debugging
if (message.content) {
console.log(`[${responseId}] CONTENT IN DONE MESSAGE (first 200 chars): "${message.content.substring(0, 200)}..."`);
}
// Clear timeout if set
if (timeoutId !== null) {
window.clearTimeout(timeoutId);
timeoutId = null;
}
// If we didn't receive any content but the stream completed normally,
// display a message to the user
if (!receivedAnyContent) {
const defaultMessage = 'I processed your request, but I don\'t have any specific information to share at the moment.';
this.processAssistantResponse(defaultMessage);
} else if (assistantResponse) {
// Save the completed streaming response to the message array
// Check if we have content in the done message
// This is particularly important for Ollama which often sends the entire response in one message
if (message.content) {
console.log(`[${responseId}] Processing content in done message: ${message.content.length} chars`);
receivedAnyContent = true;
// Replace current response if we didn't have content before or if it's empty
if (assistantResponse.length === 0) {
console.log(`[${responseId}] Using content from done message as full response`);
assistantResponse = message.content;
}
// Otherwise append it if it's different
else if (message.content !== assistantResponse) {
console.log(`[${responseId}] Appending content from done message to existing response`);
assistantResponse += message.content;
}
else {
console.log(`[${responseId}] Content in done message is identical to existing response, not appending`);
}
this.updateStreamingUI(assistantResponse);
}
// Save the final response
if (assistantResponse) {
console.log(`[${responseId}] Saving final response of ${assistantResponse.length} chars`);
this.messages.push({
role: 'assistant',
content: assistantResponse,
timestamp: new Date()
});
// Save to note
this.saveCurrentData().catch(err => {
console.error("Failed to save assistant response to note:", err);
console.error(`[${responseId}] Failed to save final response:`, err);
});
}
} else {
// If we didn't receive any content at all, show a generic message
console.log(`[${responseId}] No content received for session ${this.sessionId}`);
const defaultMessage = 'I processed your request, but I don\'t have any specific information to share at the moment.';
this.processAssistantResponse(defaultMessage);
}
/**
* Handle errors during streaming response
*/
private handleStreamingError(
source: EventSource,
timeoutId: number | null,
receivedAnyContent: boolean
) {
source.close();
// Clean up and resolve
this.cleanupEventListener(eventListener);
this.hideLoadingIndicator();
resolve();
}
};
// Register event listener for the custom event
try {
window.addEventListener('llm-stream-message', eventListener);
console.log(`[${responseId}] Event listener added for llm-stream-message events`);
} catch (err) {
console.error(`[${responseId}] Error setting up event listener:`, err);
reject(err);
return;
}
// Set initial timeout for receiving any message
initialTimeoutId = window.setTimeout(() => {
console.warn(`[${responseId}] No messages received for initial period in session ${this.sessionId}`);
if (!receivedAnyMessage) {
console.error(`[${responseId}] WebSocket connection not established for session ${this.sessionId}`);
// Clear the timeout if there was an error
if (timeoutId !== null) {
window.clearTimeout(timeoutId);
}
// Only show error message if we haven't received any content yet
if (!receivedAnyContent) {
// Instead of automatically showing the error message in the chat,
// throw an error so the parent function can handle the fallback
throw new Error('Error connecting to the LLM streaming service');
// Clean up
this.cleanupEventListener(eventListener);
this.hideLoadingIndicator();
// Show error message to user
const errorMessage = 'Connection error: Unable to establish WebSocket streaming.';
this.processAssistantResponse(errorMessage);
reject(new Error('WebSocket connection not established'));
}
}, 10000);
// Send the streaming request to start the process
console.log(`[${responseId}] Sending HTTP POST request to initiate streaming: /llm/sessions/${this.sessionId}/messages/stream`);
server.post(`llm/sessions/${this.sessionId}/messages/stream`, {
content,
useAdvancedContext,
showThinking,
stream: true // Explicitly indicate this is a streaming request
}).catch(err => {
console.error(`[${responseId}] HTTP error sending streaming request for session ${this.sessionId}:`, err);
// Clean up timeouts
if (initialTimeoutId !== null) {
window.clearTimeout(initialTimeoutId);
initialTimeoutId = null;
}
if (timeoutId !== null) {
window.clearTimeout(timeoutId);
timeoutId = null;
}
// Clean up event listener
this.cleanupEventListener(eventListener);
reject(err);
});
});
}
/**
* Clean up an event listener
*/
private cleanupEventListener(listener: ((event: Event) => void) | null): void {
if (listener) {
try {
window.removeEventListener('llm-stream-message', listener);
console.log(`Successfully removed event listener`);
} catch (err) {
console.error(`Error removing event listener:`, err);
}
}
}
/**
* Update the UI with streaming content as it arrives
*/
private updateStreamingUI(assistantResponse: string) {
const logId = `ui-update-${Date.now()}`;
console.log(`[${logId}] Updating UI with response text: ${assistantResponse.length} chars`);
if (!this.noteContextChatMessages) {
console.error(`[${logId}] noteContextChatMessages element not available`);
return;
}
// Check if we already have an assistant message element to update
const assistantElement = this.noteContextChatMessages.querySelector('.assistant-message:last-child .message-content');
if (assistantElement) {
console.log(`[${logId}] Found existing assistant message element, updating content`);
try {
// Format markdown and update the element
const formattedContent = this.formatMarkdown(assistantResponse);
// Ensure content is properly formatted
if (!formattedContent || formattedContent.trim() === '') {
console.warn(`[${logId}] Formatted content is empty, using original content`);
assistantElement.textContent = assistantResponse;
} else {
assistantElement.innerHTML = formattedContent;
}
// Apply syntax highlighting to any code blocks in the updated content
applySyntaxHighlight($(assistantElement as HTMLElement));
console.log(`[${logId}] Successfully updated existing element with ${formattedContent.length} chars of HTML`);
} catch (err) {
console.error(`[${logId}] Error updating existing element:`, err);
// Fallback to text content if HTML update fails
try {
assistantElement.textContent = assistantResponse;
console.log(`[${logId}] Fallback to text content successful`);
} catch (fallbackErr) {
console.error(`[${logId}] Even fallback update failed:`, fallbackErr);
}
}
} else {
console.log(`[${logId}] No existing assistant message element found, creating new one`);
try {
this.addMessageToChat('assistant', assistantResponse);
console.log(`[${logId}] Successfully added new assistant message`);
} catch (err) {
console.error(`[${logId}] Error adding new message:`, err);
// Last resort emergency approach - create element directly
try {
console.log(`[${logId}] Attempting emergency DOM update`);
const emergencyElement = document.createElement('div');
emergencyElement.className = 'chat-message assistant-message mb-3 d-flex';
emergencyElement.innerHTML = `
<div class="message-avatar d-flex align-items-center justify-content-center me-2 assistant-avatar">
<i class="bx bx-bot"></i>
</div>
<div class="message-content p-3 rounded flex-grow-1 assistant-content">
${assistantResponse}
</div>
`;
this.noteContextChatMessages.appendChild(emergencyElement);
console.log(`[${logId}] Emergency DOM update successful`);
} catch (emergencyErr) {
console.error(`[${logId}] Emergency DOM update failed:`, emergencyErr);
}
}
}
// Always try to scroll to the latest content
try {
if (this.chatContainer) {
this.chatContainer.scrollTop = this.chatContainer.scrollHeight;
console.log(`[${logId}] Scrolled to latest content`);
}
} catch (scrollErr) {
console.error(`[${logId}] Error scrolling to latest content:`, scrollErr);
}
}
@ -755,24 +902,103 @@ export default class LlmChatPanel extends BasicWidget {
}
private showLoadingIndicator() {
const logId = `ui-${Date.now()}`;
console.log(`[${logId}] Showing loading indicator and preparing tool execution display`);
// Ensure elements exist before trying to modify them
if (!this.loadingIndicator || !this.toolExecutionInfo || !this.toolExecutionSteps) {
console.error(`[${logId}] UI elements not properly initialized`);
return;
}
// Force display of loading indicator
try {
this.loadingIndicator.style.display = 'flex';
// Reset the tool execution area when starting a new request, but keep it visible
// We'll make it visible when we get our first tool execution event
this.toolExecutionInfo.style.display = 'none';
this.toolExecutionSteps.innerHTML = '';
// Make sure tool execution info area is always visible even before we get the first event
// This helps avoid the UI getting stuck in "Processing..." state
this.toolExecutionInfo.style.display = 'block';
// Clear previous tool steps but add a placeholder
this.toolExecutionSteps.innerHTML = `
<div class="tool-step my-1">
<div class="d-flex align-items-center">
<i class="bx bx-loader-alt bx-spin text-primary me-1"></i>
<span>Initializing...</span>
</div>
</div>
`;
// Force a UI update by accessing element properties
const forceUpdate = this.loadingIndicator.offsetHeight;
// Verify display states
console.log(`[${logId}] Loading indicator display state: ${this.loadingIndicator.style.display}`);
console.log(`[${logId}] Tool execution info display state: ${this.toolExecutionInfo.style.display}`);
console.log(`[${logId}] Loading indicator and tool execution area initialized`);
} catch (err) {
console.error(`[${logId}] Error showing loading indicator:`, err);
}
}
private hideLoadingIndicator() {
this.loadingIndicator.style.display = 'none';
const logId = `ui-${Date.now()}`;
console.log(`[${logId}] Hiding loading indicator and tool execution area`);
// Ensure elements exist before trying to modify them
if (!this.loadingIndicator || !this.toolExecutionInfo) {
console.error(`[${logId}] UI elements not properly initialized`);
return;
}
// Properly reset DOM elements
try {
// First hide the tool execution info area
this.toolExecutionInfo.style.display = 'none';
// Force a UI update by accessing element properties
const forceUpdate1 = this.toolExecutionInfo.offsetHeight;
// Then hide the loading indicator
this.loadingIndicator.style.display = 'none';
// Force another UI update
const forceUpdate2 = this.loadingIndicator.offsetHeight;
// Verify display states immediately
console.log(`[${logId}] Loading indicator display state: ${this.loadingIndicator.style.display}`);
console.log(`[${logId}] Tool execution info display state: ${this.toolExecutionInfo.style.display}`);
// Add a delay to double-check that UI updates are complete
setTimeout(() => {
console.log(`[${logId}] Verification after hide timeout: loading indicator display=${this.loadingIndicator.style.display}, tool execution info display=${this.toolExecutionInfo.style.display}`);
// Force display none again in case something changed it
if (this.loadingIndicator.style.display !== 'none') {
console.log(`[${logId}] Loading indicator still visible after timeout, forcing hidden`);
this.loadingIndicator.style.display = 'none';
}
if (this.toolExecutionInfo.style.display !== 'none') {
console.log(`[${logId}] Tool execution info still visible after timeout, forcing hidden`);
this.toolExecutionInfo.style.display = 'none';
}
}, 100);
} catch (err) {
console.error(`[${logId}] Error hiding loading indicator:`, err);
}
}
/**
* Show tool execution information in the UI
*/
private showToolExecutionInfo(toolExecutionData: any) {
console.log(`Showing tool execution info: ${JSON.stringify(toolExecutionData)}`);
// Make sure tool execution info section is visible
this.toolExecutionInfo.style.display = 'block';
this.loadingIndicator.style.display = 'flex'; // Ensure loading indicator is shown during tool execution
// Create a new step element to show the tool being executed
const stepElement = document.createElement('div');
@ -815,11 +1041,17 @@ export default class LlmChatPanel extends BasicWidget {
`;
}
if (stepHtml) {
stepElement.innerHTML = stepHtml;
this.toolExecutionSteps.appendChild(stepElement);
// Scroll to bottom of tool execution steps
this.toolExecutionSteps.scrollTop = this.toolExecutionSteps.scrollHeight;
console.log(`Added new tool execution step to UI`);
} else {
console.log(`No HTML generated for tool execution data:`, toolExecutionData);
}
}
/**
@ -968,6 +1200,26 @@ export default class LlmChatPanel extends BasicWidget {
return processedContent;
}
/**
* Show thinking state in the UI
*/
private showThinkingState(thinkingData: string) {
// Update the UI to show thinking indicator
const thinking = typeof thinkingData === 'string' ? thinkingData : 'Thinking...';
const toolExecutionStep = document.createElement('div');
toolExecutionStep.className = 'tool-step my-1';
toolExecutionStep.innerHTML = `
<div class="d-flex align-items-center">
<i class="bx bx-bulb text-warning me-1"></i>
<span>${this.escapeHtml(thinking)}</span>
</div>
`;
this.toolExecutionInfo.style.display = 'block';
this.toolExecutionSteps.appendChild(toolExecutionStep);
this.toolExecutionSteps.scrollTop = this.toolExecutionSteps.scrollHeight;
}
/**
* Validate embedding providers configuration
* Check if there are issues with the embedding providers that might affect LLM functionality

View File

@ -791,6 +791,163 @@ async function indexNote(req: Request, res: Response) {
}
}
/**
* @swagger
* /api/llm/sessions/{sessionId}/messages/stream:
* post:
* summary: Start a streaming response session via WebSockets
* operationId: llm-stream-message
* parameters:
* - name: sessionId
* in: path
* required: true
* schema:
* type: string
* requestBody:
* required: true
* content:
* application/json:
* schema:
* type: object
* properties:
* content:
* type: string
* description: The user message to send to the LLM
* useAdvancedContext:
* type: boolean
* description: Whether to use advanced context extraction
* showThinking:
* type: boolean
* description: Whether to show thinking process in the response
* responses:
* '200':
* description: Streaming started successfully
* '404':
* description: Session not found
* '500':
* description: Error processing request
* security:
* - session: []
* tags: ["llm"]
*/
async function streamMessage(req: Request, res: Response) {
log.info("=== Starting streamMessage ===");
try {
const sessionId = req.params.sessionId;
const { content, useAdvancedContext, showThinking } = req.body;
if (!content || typeof content !== 'string' || content.trim().length === 0) {
throw new Error('Content cannot be empty');
}
// Check if session exists
const session = restChatService.getSessions().get(sessionId);
if (!session) {
throw new Error('Session not found');
}
// Update last active timestamp
session.lastActive = new Date();
// Add user message to the session
session.messages.push({
role: 'user',
content,
timestamp: new Date()
});
// Create request parameters for the pipeline
const requestParams = {
sessionId,
content,
useAdvancedContext: useAdvancedContext === true,
showThinking: showThinking === true,
stream: true // Always stream for this endpoint
};
// Create a fake request/response pair to pass to the handler
const fakeReq = {
...req,
method: 'GET', // Set to GET to indicate streaming
query: {
stream: 'true', // Set stream param - don't use format: 'stream' to avoid confusion
useAdvancedContext: String(useAdvancedContext === true),
showThinking: String(showThinking === true)
},
params: {
sessionId
},
// Make sure the original content is available to the handler
body: {
content,
useAdvancedContext: useAdvancedContext === true,
showThinking: showThinking === true
}
} as unknown as Request;
// Log to verify correct parameters
log.info(`WebSocket stream settings - useAdvancedContext=${useAdvancedContext === true}, in query=${fakeReq.query.useAdvancedContext}, in body=${fakeReq.body.useAdvancedContext}`);
// Extra safety to ensure the parameters are passed correctly
if (useAdvancedContext === true) {
log.info(`Enhanced context IS enabled for this request`);
} else {
log.info(`Enhanced context is NOT enabled for this request`);
}
// Process the request in the background
Promise.resolve().then(async () => {
try {
await restChatService.handleSendMessage(fakeReq, res);
} catch (error) {
log.error(`Background message processing error: ${error}`);
// Import the WebSocket service
const wsService = (await import('../../services/ws.js')).default;
// Define LLMStreamMessage interface
interface LLMStreamMessage {
type: 'llm-stream';
sessionId: string;
content?: string;
thinking?: string;
toolExecution?: any;
done?: boolean;
error?: string;
raw?: unknown;
}
// Send error to client via WebSocket
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
error: `Error processing message: ${error}`,
done: true
} as LLMStreamMessage);
}
});
// Import the WebSocket service
const wsService = (await import('../../services/ws.js')).default;
// Let the client know streaming has started via WebSocket (helps client confirm connection is working)
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
thinking: 'Initializing streaming LLM response...'
});
// Let the client know streaming has started via HTTP response
return {
success: true,
message: 'Streaming started',
sessionId
};
} catch (error: any) {
log.error(`Error starting message stream: ${error.message}`);
throw error;
}
}
export default {
// Chat session management
createSession,
@ -799,6 +956,7 @@ export default {
listSessions,
deleteSession,
sendMessage,
streamMessage, // Add new streaming endpoint
// Knowledge base index management
getIndexStats,

View File

@ -400,6 +400,7 @@ function register(app: express.Application) {
apiRoute(DEL, "/api/llm/sessions/:sessionId", llmRoute.deleteSession);
apiRoute(PST, "/api/llm/sessions/:sessionId/messages", llmRoute.sendMessage);
apiRoute(GET, "/api/llm/sessions/:sessionId/messages", llmRoute.sendMessage);
apiRoute(PST, "/api/llm/sessions/:sessionId/messages/stream", llmRoute.streamMessage);
// LLM index management endpoints - reorganized for REST principles
apiRoute(GET, "/api/llm/indexes/stats", llmRoute.getIndexStats);

View File

@ -1,12 +1,16 @@
import type { ToolCall } from './tools/tool_interfaces.js';
import type { ModelMetadata } from './providers/provider_options.js';
/**
* Interface for chat messages between client and LLM models
*/
export interface Message {
role: 'user' | 'assistant' | 'system' | 'tool';
content: string;
name?: string;
tool_call_id?: string;
tool_calls?: ToolCall[] | any[];
sessionId?: string; // Optional session ID for WebSocket communication
}
/**
@ -32,6 +36,12 @@ export interface StreamChunk {
completionTokens?: number;
totalTokens?: number;
};
/**
* Raw provider-specific data from the original response chunk
* This can include thinking state, tool execution info, etc.
*/
raw?: any;
}
/**

View File

@ -128,6 +128,10 @@ export class ChatPipeline {
const useTools = modelSelection.options.enableTools === true;
const useEnhancedContext = input.options?.useAdvancedContext === true;
// Log details about the advanced context parameter
log.info(`Enhanced context option check: input.options=${JSON.stringify(input.options || {})}`);
log.info(`Enhanced context decision: useEnhancedContext=${useEnhancedContext}, hasQuery=${!!input.query}`);
// Early return if we don't have a query or enhanced context is disabled
if (!input.query || !useEnhancedContext) {
log.info(`========== SIMPLE QUERY MODE ==========`);
@ -431,8 +435,8 @@ export class ChatPipeline {
...modelSelection.options,
// Ensure tool support is still enabled for follow-up requests
enableTools: true,
// Disable streaming during tool execution follow-ups
stream: false,
// Preserve original streaming setting for tool execution follow-ups
stream: modelSelection.options.stream,
// Add tool execution status for Ollama provider
...(currentResponse.provider === 'Ollama' ? { toolExecutionStatus } : {})
}
@ -498,6 +502,8 @@ export class ChatPipeline {
messages: currentMessages,
options: {
...modelSelection.options,
// Preserve streaming for error follow-up
stream: modelSelection.options.stream,
// For Ollama, include tool execution status
...(currentResponse.provider === 'Ollama' ? { toolExecutionStatus } : {})
}
@ -547,6 +553,8 @@ export class ChatPipeline {
options: {
...modelSelection.options,
enableTools: false, // Disable tools for the final response
// Preserve streaming setting for max iterations response
stream: modelSelection.options.stream,
// For Ollama, include tool execution status
...(currentResponse.provider === 'Ollama' ? { toolExecutionStatus } : {})
}

View File

@ -1,12 +1,12 @@
import { BasePipelineStage } from '../pipeline_stage.js';
import type { LLMCompletionInput } from '../interfaces.js';
import type { ChatCompletionOptions, ChatResponse } from '../../ai_interface.js';
import type { ChatCompletionOptions, ChatResponse, StreamChunk } from '../../ai_interface.js';
import aiServiceManager from '../../ai_service_manager.js';
import toolRegistry from '../../tools/tool_registry.js';
import log from '../../../log.js';
/**
* Pipeline stage for LLM completion
* Pipeline stage for LLM completion with enhanced streaming support
*/
export class LLMCompletionStage extends BasePipelineStage<LLMCompletionInput, { response: ChatResponse }> {
constructor() {
@ -15,88 +15,124 @@ export class LLMCompletionStage extends BasePipelineStage<LLMCompletionInput, {
/**
* Generate LLM completion using the AI service
*
* This enhanced version supports better streaming by forwarding raw provider data
* and ensuring consistent handling of stream options.
*/
protected async process(input: LLMCompletionInput): Promise<{ response: ChatResponse }> {
const { messages, options, provider } = input;
// Log input options, particularly focusing on the stream option
// Log input options
log.info(`[LLMCompletionStage] Input options: ${JSON.stringify({
model: options.model,
provider,
stream: options.stream,
enableTools: options.enableTools
})}`);
log.info(`[LLMCompletionStage] Stream option in input: ${options.stream}, type: ${typeof options.stream}`);
// Create a deep copy of options to avoid modifying the original
const updatedOptions: ChatCompletionOptions = JSON.parse(JSON.stringify(options));
// IMPORTANT: Handle stream option carefully:
// 1. If it's undefined, leave it undefined (provider will use defaults)
// 2. If explicitly set to true/false, ensure it's a proper boolean
// Handle stream option explicitly
if (options.stream !== undefined) {
updatedOptions.stream = options.stream === true;
log.info(`[LLMCompletionStage] Stream explicitly provided in options, set to: ${updatedOptions.stream}`);
} else {
// If undefined, leave it undefined so provider can use its default behavior
log.info(`[LLMCompletionStage] Stream option not explicitly set, leaving as undefined`);
log.info(`[LLMCompletionStage] Stream explicitly set to: ${updatedOptions.stream}`);
}
// If this is a direct (non-stream) call to Ollama but has the stream flag,
// ensure we set additional metadata to maintain proper state
if (updatedOptions.stream && !provider && updatedOptions.providerMetadata?.provider === 'ollama') {
log.info(`[LLMCompletionStage] This is an Ollama request with stream=true, ensuring provider config is consistent`);
}
// Add capture of raw provider data for streaming
if (updatedOptions.stream) {
// Add a function to capture raw provider data in stream chunks
const originalStreamCallback = updatedOptions.streamCallback;
updatedOptions.streamCallback = async (text, done, rawProviderData) => {
// Create an enhanced chunk with the raw provider data
const enhancedChunk = {
text,
done,
// Include raw provider data if available
raw: rawProviderData
};
log.info(`[LLMCompletionStage] Copied options: ${JSON.stringify({
model: updatedOptions.model,
stream: updatedOptions.stream,
enableTools: updatedOptions.enableTools
})}`);
// Call the original callback if provided
if (originalStreamCallback) {
return originalStreamCallback(text, done, enhancedChunk);
}
};
}
// Check if tools should be enabled
if (updatedOptions.enableTools !== false) {
// Get all available tools from the registry
const toolDefinitions = toolRegistry.getAllToolDefinitions();
if (toolDefinitions.length > 0) {
// Enable tools and add them to the options
updatedOptions.enableTools = true;
updatedOptions.tools = toolDefinitions;
log.info(`Adding ${toolDefinitions.length} tools to LLM request`);
}
}
// Determine which provider to use - prioritize in this order:
// 1. Explicit provider parameter (legacy approach)
// 2. Provider from metadata
// 3. Auto-selection
// Determine which provider to use
let selectedProvider = provider;
// If no explicit provider is specified, check for provider metadata
if (!selectedProvider && updatedOptions.providerMetadata?.provider) {
selectedProvider = updatedOptions.providerMetadata.provider;
log.info(`Using provider ${selectedProvider} from metadata for model ${updatedOptions.model}`);
}
log.info(`Generating LLM completion, provider: ${selectedProvider || 'auto'}, model: ${updatedOptions?.model || 'default'}`);
log.info(`[LLMCompletionStage] Options before service call: ${JSON.stringify({
model: updatedOptions.model,
stream: updatedOptions.stream,
enableTools: updatedOptions.enableTools
})}`);
// If provider is specified (either explicit or from metadata), use that specific provider
// Use specific provider if available
if (selectedProvider && aiServiceManager.isProviderAvailable(selectedProvider)) {
const service = aiServiceManager.getService(selectedProvider);
log.info(`[LLMCompletionStage] Using specific service for ${selectedProvider}, stream option: ${updatedOptions.stream}`);
log.info(`[LLMCompletionStage] Using specific service for ${selectedProvider}`);
// Generate completion and wrap with enhanced stream handling
const response = await service.generateChatCompletion(messages, updatedOptions);
// If streaming is enabled, enhance the stream method
if (response.stream && typeof response.stream === 'function' && updatedOptions.stream) {
const originalStream = response.stream;
// Replace the stream method with an enhanced version that captures and forwards raw data
response.stream = async (callback) => {
return originalStream(async (chunk) => {
// Forward the chunk with any additional provider-specific data
// Create an enhanced chunk with provider info
const enhancedChunk: StreamChunk = {
...chunk,
// If the provider didn't include raw data, add minimal info
raw: chunk.raw || {
provider: selectedProvider,
model: response.model
}
};
return callback(enhancedChunk);
});
};
}
return { response };
}
// Otherwise use the service manager to select an available provider
log.info(`[LLMCompletionStage] Using auto-selected service, stream option: ${updatedOptions.stream}`);
// Use auto-selection if no specific provider
log.info(`[LLMCompletionStage] Using auto-selected service`);
const response = await aiServiceManager.generateChatCompletion(messages, updatedOptions);
// Add similar stream enhancement for auto-selected provider
if (response.stream && typeof response.stream === 'function' && updatedOptions.stream) {
const originalStream = response.stream;
response.stream = async (callback) => {
return originalStream(async (chunk) => {
// Create an enhanced chunk with provider info
const enhancedChunk: StreamChunk = {
...chunk,
raw: chunk.raw || {
provider: response.provider,
model: response.model
}
};
return callback(enhancedChunk);
});
};
}
return { response };
}
}

View File

@ -112,6 +112,8 @@ export class AnthropicService extends BaseAIService {
/**
* Handle streaming response from Anthropic
*
* Simplified implementation that leverages the Anthropic SDK's streaming capabilities
*/
private async handleStreamingResponse(
client: any,
@ -119,26 +121,29 @@ export class AnthropicService extends BaseAIService {
opts: ChatCompletionOptions,
providerOptions: AnthropicOptions
): Promise<ChatResponse> {
// Create a stream handler function that processes the SDK's stream
const streamHandler = async (callback: (chunk: StreamChunk) => Promise<void> | void): Promise<string> => {
let completeText = '';
// Create a function that will return a Promise that resolves with the final text
const streamHandler = async (callback: (chunk: StreamChunk) => Promise<void> | void): Promise<string> => {
try {
// Request a streaming response from Anthropic
const streamResponse = await client.messages.create({
...params,
stream: true
});
// Process each chunk in the stream
for await (const chunk of streamResponse) {
// Only process text content deltas
if (chunk.type === 'content_block_delta' && chunk.delta?.type === 'text_delta') {
const text = chunk.delta.text || '';
completeText += text;
// Call the callback with the chunk
// Send the chunk to the caller
await callback({
text,
done: false,
usage: {} // Usage stats not available in chunks
raw: chunk // Include the raw chunk for advanced processing
});
}
}
@ -146,11 +151,7 @@ export class AnthropicService extends BaseAIService {
// Signal completion
await callback({
text: '',
done: true,
usage: {
// We don't have token usage information in streaming mode from the chunks
totalTokens: completeText.length / 4 // Rough estimate
}
done: true
});
return completeText;
@ -160,25 +161,12 @@ export class AnthropicService extends BaseAIService {
}
};
// If a stream callback was provided in the options, set up immediate streaming
if (opts.streamCallback) {
// Start streaming in the background
void streamHandler(async (chunk) => {
if (opts.streamCallback) {
await opts.streamCallback(chunk.text, chunk.done);
}
});
}
// Return a response object with the stream handler
return {
text: completeText, // This will be empty initially until streaming completes
text: '', // Initial text is empty, will be populated during streaming
model: providerOptions.model,
provider: this.getName(),
stream: streamHandler,
usage: {
// We don't have token counts initially with streaming
totalTokens: 0
}
stream: streamHandler
};
}

View File

@ -1,6 +1,6 @@
import options from '../../options.js';
import { BaseAIService } from '../base_ai_service.js';
import type { Message, ChatCompletionOptions, ChatResponse } from '../ai_interface.js';
import type { Message, ChatCompletionOptions, ChatResponse, StreamChunk } from '../ai_interface.js';
import { OllamaMessageFormatter } from '../formatters/ollama_formatter.js';
import log from '../../log.js';
import type { ToolCall } from '../tools/tool_interfaces.js';
@ -37,7 +37,37 @@ export class OllamaService extends BaseAIService {
if (!baseUrl) {
throw new Error('Ollama base URL is not configured');
}
this.client = new Ollama({ host: baseUrl });
log.info(`Creating new Ollama client with base URL: ${baseUrl}`);
// Create client with debug options
try {
this.client = new Ollama({
host: baseUrl,
fetch: (url, init) => {
log.info(`Ollama API request to: ${url}`);
log.info(`Ollama API request method: ${init?.method || 'GET'}`);
log.info(`Ollama API request headers: ${JSON.stringify(init?.headers || {})}`);
// Call the actual fetch
return fetch(url, init).then(response => {
log.info(`Ollama API response status: ${response.status}`);
if (!response.ok) {
log.error(`Ollama API error response: ${response.statusText}`);
}
return response;
}).catch(error => {
log.error(`Ollama API fetch error: ${error.message}`);
throw error;
});
}
});
log.info(`Ollama client successfully created`);
} catch (error) {
log.error(`Error creating Ollama client: ${error}`);
throw error;
}
}
return this.client;
}
@ -88,11 +118,6 @@ export class OllamaService extends BaseAIService {
log.info(`Sending to Ollama with formatted messages: ${messagesToSend.length}`);
}
// Log request details
log.info(`========== OLLAMA API REQUEST ==========`);
log.info(`Model: ${providerOptions.model}, Messages: ${messagesToSend.length}`);
log.info(`Stream: ${opts.streamCallback ? true : false}`);
// Get tools if enabled
let tools = [];
if (providerOptions.enableTools !== false) {
@ -119,36 +144,6 @@ export class OllamaService extends BaseAIService {
}
}
// Check message structure and log detailed information about each message
messagesToSend.forEach((msg: any, index: number) => {
const keys = Object.keys(msg);
log.info(`Message ${index}, Role: ${msg.role}, Keys: ${keys.join(', ')}`);
// Log message content preview
if (msg.content && typeof msg.content === 'string') {
const contentPreview = msg.content.length > 200
? `${msg.content.substring(0, 200)}...`
: msg.content;
log.info(`Message ${index} content: ${contentPreview}`);
}
// Log tool-related details
if (keys.includes('tool_calls')) {
log.info(`Message ${index} has ${msg.tool_calls.length} tool calls`);
}
if (keys.includes('tool_call_id')) {
log.info(`Message ${index} is a tool response for tool call ID: ${msg.tool_call_id}`);
}
if (keys.includes('name') && msg.role === 'tool') {
log.info(`Message ${index} is from tool: ${msg.name}`);
}
});
// Get client instance
const client = this.getClient();
// Convert our message format to Ollama's format
const convertedMessages = messagesToSend.map(msg => {
const converted: any = {
@ -202,62 +197,12 @@ export class OllamaService extends BaseAIService {
tools: tools.length > 0 ? tools : undefined
};
// Get client instance
const client = this.getClient();
// Handle streaming
if (opts.streamCallback) {
let responseText = '';
let responseToolCalls: any[] = [];
log.info(`Using streaming mode with Ollama client`);
let streamResponse: OllamaChatResponse | null = null;
// Create streaming request
const streamingRequest = {
...baseRequestOptions,
stream: true as const // Use const assertion to fix the type
};
// Get the async iterator
const streamIterator = await client.chat(streamingRequest);
// Process each chunk
for await (const chunk of streamIterator) {
// Save the last chunk for final stats
streamResponse = chunk;
// Accumulate text
if (chunk.message?.content) {
responseText += chunk.message.content;
}
// Check for tool calls
if (chunk.message?.tool_calls && chunk.message.tool_calls.length > 0) {
responseToolCalls = [...chunk.message.tool_calls];
}
// Call the callback with the current chunk content
if (opts.streamCallback) {
// Original callback expects text content, isDone flag, and optional original chunk
opts.streamCallback(
chunk.message?.content || '',
!!chunk.done,
chunk
);
}
}
// Create the final response after streaming is complete
return {
text: responseText,
model: providerOptions.model,
provider: this.getName(),
tool_calls: this.transformToolCalls(responseToolCalls),
usage: {
promptTokens: streamResponse?.prompt_eval_count || 0,
completionTokens: streamResponse?.eval_count || 0,
totalTokens: (streamResponse?.prompt_eval_count || 0) + (streamResponse?.eval_count || 0)
}
};
if (opts.stream || opts.streamCallback) {
return this.handleStreamingResponse(client, baseRequestOptions, opts, providerOptions);
} else {
// Non-streaming request
log.info(`Using non-streaming mode with Ollama client`);
@ -275,12 +220,6 @@ export class OllamaService extends BaseAIService {
log.info(`Model: ${response.model}, Content length: ${response.message?.content?.length || 0} chars`);
log.info(`Tokens: ${response.prompt_eval_count || 0} prompt, ${response.eval_count || 0} completion, ${(response.prompt_eval_count || 0) + (response.eval_count || 0)} total`);
// Log content preview
const contentPreview = response.message?.content && response.message.content.length > 300
? `${response.message.content.substring(0, 300)}...`
: response.message?.content || '';
log.info(`Response content: ${contentPreview}`);
// Handle the response and extract tool calls if present
const chatResponse: ChatResponse = {
text: response.message?.content || '',
@ -297,10 +236,8 @@ export class OllamaService extends BaseAIService {
if (response.message?.tool_calls && response.message.tool_calls.length > 0) {
log.info(`Ollama response includes ${response.message.tool_calls.length} tool calls`);
chatResponse.tool_calls = this.transformToolCalls(response.message.tool_calls);
log.info(`Transformed tool calls: ${JSON.stringify(chatResponse.tool_calls)}`);
}
log.info(`========== END OLLAMA RESPONSE ==========`);
return chatResponse;
}
} catch (error: any) {
@ -315,6 +252,303 @@ export class OllamaService extends BaseAIService {
}
}
/**
* Handle streaming response from Ollama
*
* Simplified implementation that leverages the Ollama SDK's streaming capabilities
*/
private async handleStreamingResponse(
client: Ollama,
requestOptions: any,
opts: ChatCompletionOptions,
providerOptions: OllamaOptions
): Promise<ChatResponse> {
log.info(`Using streaming mode with Ollama client`);
// Log detailed information about the streaming setup
log.info(`Ollama streaming details: model=${providerOptions.model}, streamCallback=${opts.streamCallback ? 'provided' : 'not provided'}`);
// Create a stream handler function that processes the SDK's stream
const streamHandler = async (callback: (chunk: StreamChunk) => Promise<void> | void): Promise<string> => {
let completeText = '';
let responseToolCalls: any[] = [];
let chunkCount = 0;
try {
// Create streaming request
const streamingRequest = {
...requestOptions,
stream: true as const // Use const assertion to fix the type
};
log.info(`Creating Ollama streaming request with options: model=${streamingRequest.model}, stream=${streamingRequest.stream}, tools=${streamingRequest.tools ? streamingRequest.tools.length : 0}`);
// Get the async iterator
log.info(`Calling Ollama chat API with streaming enabled`);
let streamIterator;
try {
log.info(`About to call client.chat with streaming request to ${options.getOption('ollamaBaseUrl')}`);
log.info(`Stream request: model=${streamingRequest.model}, messages count=${streamingRequest.messages?.length || 0}`);
// Check if we can connect to Ollama by getting available models
try {
log.info(`Performing Ollama health check...`);
const healthCheck = await client.list();
log.info(`Ollama health check successful. Available models: ${healthCheck.models.map(m => m.name).join(', ')}`);
} catch (healthError) {
log.error(`Ollama health check failed: ${healthError instanceof Error ? healthError.message : String(healthError)}`);
log.error(`This indicates a connection issue to the Ollama server at ${options.getOption('ollamaBaseUrl')}`);
throw new Error(`Unable to connect to Ollama server: ${healthError instanceof Error ? healthError.message : String(healthError)}`);
}
// Make the streaming request
log.info(`Proceeding with Ollama streaming request after successful health check`);
streamIterator = await client.chat(streamingRequest);
log.info(`Successfully obtained Ollama stream iterator`);
if (!streamIterator || typeof streamIterator[Symbol.asyncIterator] !== 'function') {
log.error(`Invalid stream iterator returned: ${JSON.stringify(streamIterator)}`);
throw new Error('Stream iterator is not valid');
}
} catch (error) {
log.error(`Error getting stream iterator: ${error instanceof Error ? error.message : String(error)}`);
log.error(`Error stack: ${error instanceof Error ? error.stack : 'No stack trace'}`);
throw error;
}
// Process each chunk
try {
log.info(`About to start processing stream chunks`);
for await (const chunk of streamIterator) {
chunkCount++;
// Log first chunk and then periodic updates
if (chunkCount === 1 || chunkCount % 10 === 0) {
log.info(`Processing Ollama stream chunk #${chunkCount}, done=${!!chunk.done}, has content=${!!chunk.message?.content}`);
}
// Accumulate text
if (chunk.message?.content) {
const newContent = chunk.message.content;
completeText += newContent;
if (chunkCount === 1) {
log.info(`First content chunk received: "${newContent.substring(0, 50)}${newContent.length > 50 ? '...' : ''}"`);
}
}
// Check for tool calls
if (chunk.message?.tool_calls && chunk.message.tool_calls.length > 0) {
responseToolCalls = [...chunk.message.tool_calls];
log.info(`Received tool calls in stream: ${chunk.message.tool_calls.length} tools`);
}
// Send the chunk to the caller
await callback({
text: chunk.message?.content || '',
done: !!chunk.done,
raw: chunk // Include the raw chunk for advanced processing
});
// If this is the done chunk, log it
if (chunk.done) {
log.info(`Reached final chunk (done=true) after ${chunkCount} chunks, total content length: ${completeText.length}`);
}
}
log.info(`Completed streaming from Ollama: processed ${chunkCount} chunks, total content: ${completeText.length} chars`);
// Signal completion
await callback({
text: '',
done: true
});
} catch (streamProcessError) {
log.error(`Error processing Ollama stream: ${streamProcessError instanceof Error ? streamProcessError.message : String(streamProcessError)}`);
log.error(`Stream process error stack: ${streamProcessError instanceof Error ? streamProcessError.stack : 'No stack trace'}`);
// Try to signal completion with error
try {
await callback({
text: '',
done: true,
raw: { error: streamProcessError instanceof Error ? streamProcessError.message : String(streamProcessError) }
});
} catch (finalError) {
log.error(`Error sending final error chunk: ${finalError}`);
}
throw streamProcessError;
}
return completeText;
} catch (error) {
log.error(`Error in Ollama streaming: ${error}`);
log.error(`Error details: ${error instanceof Error ? error.stack : 'No stack trace available'}`);
throw error;
}
};
// Handle direct streamCallback if provided
if (opts.streamCallback) {
let completeText = '';
let responseToolCalls: any[] = [];
let finalChunk: OllamaChatResponse | null = null;
let chunkCount = 0;
try {
// Create streaming request
const streamingRequest = {
...requestOptions,
stream: true as const
};
log.info(`Starting Ollama direct streamCallback processing with model ${providerOptions.model}`);
// Get the async iterator
log.info(`Calling Ollama chat API for direct streaming`);
let streamIterator;
try {
log.info(`About to call client.chat with streaming request to ${options.getOption('ollamaBaseUrl')}`);
log.info(`Model: ${streamingRequest.model}, Stream: ${streamingRequest.stream}`);
log.info(`Messages count: ${streamingRequest.messages.length}`);
log.info(`First message: role=${streamingRequest.messages[0].role}, content preview=${streamingRequest.messages[0].content?.substring(0, 50) || 'empty'}`);
// Perform health check before streaming
try {
log.info(`Performing Ollama health check before direct streaming...`);
const healthCheck = await client.list();
log.info(`Ollama health check successful. Available models: ${healthCheck.models.map(m => m.name).join(', ')}`);
} catch (healthError) {
log.error(`Ollama health check failed: ${healthError instanceof Error ? healthError.message : String(healthError)}`);
log.error(`This indicates a connection issue to the Ollama server at ${options.getOption('ollamaBaseUrl')}`);
throw new Error(`Unable to connect to Ollama server: ${healthError instanceof Error ? healthError.message : String(healthError)}`);
}
// Proceed with streaming after successful health check
log.info(`Making Ollama streaming request after successful health check`);
streamIterator = await client.chat(streamingRequest);
log.info(`Successfully obtained Ollama stream iterator for direct callback`);
// Check if the stream iterator is valid
if (!streamIterator || typeof streamIterator[Symbol.asyncIterator] !== 'function') {
log.error(`Invalid stream iterator returned from Ollama: ${JSON.stringify(streamIterator)}`);
throw new Error('Invalid stream iterator returned from Ollama');
}
log.info(`Stream iterator is valid, beginning processing`);
} catch (error) {
log.error(`Error getting stream iterator from Ollama: ${error instanceof Error ? error.message : String(error)}`);
log.error(`Error stack: ${error instanceof Error ? error.stack : 'No stack trace'}`);
throw error;
}
// Process each chunk
try {
log.info(`Starting to iterate through stream chunks`);
for await (const chunk of streamIterator) {
chunkCount++;
finalChunk = chunk;
// Log first chunk and periodic updates
if (chunkCount === 1 || chunkCount % 10 === 0) {
log.info(`Processing Ollama direct stream chunk #${chunkCount}, done=${!!chunk.done}, has content=${!!chunk.message?.content}`);
}
// Accumulate text
if (chunk.message?.content) {
const newContent = chunk.message.content;
completeText += newContent;
if (chunkCount === 1) {
log.info(`First direct content chunk: "${newContent.substring(0, 50)}${newContent.length > 50 ? '...' : ''}"`);
}
}
// Check for tool calls
if (chunk.message?.tool_calls && chunk.message.tool_calls.length > 0) {
responseToolCalls = [...chunk.message.tool_calls];
log.info(`Received tool calls in direct stream: ${chunk.message.tool_calls.length} tools`);
}
// Call the callback with the current chunk content
if (opts.streamCallback) {
try {
// For the final chunk, make sure to send the complete text with done=true
if (chunk.done) {
log.info(`Sending final callback with done=true and complete content (${completeText.length} chars)`);
await opts.streamCallback(
completeText, // Send the full accumulated content for the final chunk
true,
{ ...chunk, message: { ...chunk.message, content: completeText } }
);
} else if (chunk.message?.content) {
// For content chunks, send them as they come
await opts.streamCallback(
chunk.message.content,
!!chunk.done,
chunk
);
} else if (chunk.message?.tool_calls && chunk.message.tool_calls.length > 0) {
// For tool call chunks, send an empty content string but include the tool calls
await opts.streamCallback(
'',
!!chunk.done,
chunk
);
}
if (chunkCount === 1) {
log.info(`Successfully called streamCallback with first chunk`);
}
} catch (callbackError) {
log.error(`Error in streamCallback: ${callbackError}`);
}
}
// If this is the done chunk, log it
if (chunk.done) {
log.info(`Reached final direct chunk (done=true) after ${chunkCount} chunks, total content length: ${completeText.length}`);
}
}
log.info(`Completed direct streaming from Ollama: processed ${chunkCount} chunks, final content: ${completeText.length} chars`);
} catch (iterationError) {
log.error(`Error iterating through Ollama stream chunks: ${iterationError instanceof Error ? iterationError.message : String(iterationError)}`);
log.error(`Iteration error stack: ${iterationError instanceof Error ? iterationError.stack : 'No stack trace'}`);
throw iterationError;
}
// Create the final response after streaming is complete
return {
text: completeText,
model: providerOptions.model,
provider: this.getName(),
tool_calls: this.transformToolCalls(responseToolCalls),
usage: {
promptTokens: finalChunk?.prompt_eval_count || 0,
completionTokens: finalChunk?.eval_count || 0,
totalTokens: (finalChunk?.prompt_eval_count || 0) + (finalChunk?.eval_count || 0)
}
};
} catch (error) {
log.error(`Error in Ollama streaming with callback: ${error}`);
log.error(`Error details: ${error instanceof Error ? error.stack : 'No stack trace available'}`);
throw error;
}
}
// Return a response object with the stream handler
return {
text: '', // Initial text is empty, will be populated during streaming
model: providerOptions.model,
provider: this.getName(),
stream: streamHandler
};
}
/**
* Transform Ollama tool calls to the standard format expected by the pipeline
*/

View File

@ -70,62 +70,19 @@ export class OpenAIService extends BaseAIService {
if (providerOptions.stream) {
params.stream = true;
// Get stream from OpenAI SDK
const stream = await client.chat.completions.create(params);
let fullText = '';
// If a direct callback is provided, use it
if (providerOptions.streamCallback) {
// Process the stream with the callback
try {
// The stream is an AsyncIterable
if (Symbol.asyncIterator in stream) {
for await (const chunk of stream as AsyncIterable<OpenAI.Chat.ChatCompletionChunk>) {
const content = chunk.choices[0]?.delta?.content || '';
if (content) {
fullText += content;
await providerOptions.streamCallback(content, false, chunk);
}
// If this is the last chunk
if (chunk.choices[0]?.finish_reason) {
await providerOptions.streamCallback('', true, chunk);
}
}
} else {
console.error('Stream is not iterable, falling back to non-streaming response');
// If we get a non-streaming response somehow
if ('choices' in stream) {
const content = stream.choices[0]?.message?.content || '';
fullText = content;
if (providerOptions.streamCallback) {
await providerOptions.streamCallback(content, true, stream);
}
}
}
} catch (error) {
console.error('Error processing stream:', error);
throw error;
}
// Return a response with the stream handler
return {
text: fullText,
text: '', // Initial empty text, will be populated during streaming
model: params.model,
provider: this.getName(),
usage: {} // Usage stats aren't available with streaming
};
} else {
// Use the more flexible stream interface
return {
text: '', // Initial empty text, will be filled by stream processing
model: params.model,
provider: this.getName(),
usage: {}, // Usage stats aren't available with streaming
stream: async (callback) => {
let completeText = '';
try {
// The stream is an AsyncIterable
// Process the stream
if (Symbol.asyncIterator in stream) {
for await (const chunk of stream as AsyncIterable<OpenAI.Chat.ChatCompletionChunk>) {
const content = chunk.choices[0]?.delta?.content || '';
@ -135,10 +92,11 @@ export class OpenAIService extends BaseAIService {
completeText += content;
}
// Call the provided callback with the StreamChunk interface
// Send the chunk to the caller with raw data
await callback({
text: content,
done: isDone
done: isDone,
raw: chunk // Include the raw chunk for advanced processing
});
if (isDone) {
@ -146,15 +104,16 @@ export class OpenAIService extends BaseAIService {
}
}
} else {
// Fallback for non-iterable response
console.warn('Stream is not iterable, falling back to non-streaming response');
// If we get a non-streaming response somehow
if ('choices' in stream) {
const content = stream.choices[0]?.message?.content || '';
completeText = content;
await callback({
text: content,
done: true
done: true,
raw: stream
});
}
}
@ -166,7 +125,6 @@ export class OpenAIService extends BaseAIService {
return completeText;
}
};
}
} else {
// Non-streaming response
params.stream = false;

View File

@ -1,6 +1,26 @@
import log from "../log.js";
import type { Request, Response } from "express";
import type { Message, ChatCompletionOptions } from "./ai_interface.js";
import type { Message, ChatCompletionOptions, ChatResponse, StreamChunk } from "./ai_interface.js";
/**
* Interface for WebSocket LLM streaming messages
*/
interface LLMStreamMessage {
type: 'llm-stream';
sessionId: string;
content?: string;
thinking?: string;
toolExecution?: {
action?: string;
tool?: string;
result?: string;
error?: string;
args?: Record<string, unknown>;
};
done?: boolean;
error?: string;
raw?: unknown;
}
import contextService from "./context/services/context_service.js";
import { LLM_CONSTANTS } from './constants/provider_constants.js';
import { ERROR_PROMPTS } from './constants/llm_prompt_constants.js';
@ -290,22 +310,24 @@ class RestChatService {
// Add logging for POST requests
log.info(`LLM POST message: sessionId=${req.params.sessionId}, useAdvancedContext=${useAdvancedContext}, showThinking=${showThinking}, contentLength=${content ? content.length : 0}`);
} else if (req.method === 'GET') {
// For GET (streaming) requests, get format from query params
// The content should have been sent in a previous POST request
useAdvancedContext = req.query.useAdvancedContext === 'true';
showThinking = req.query.showThinking === 'true';
content = ''; // We don't need content for GET requests
// For GET (streaming) requests, get parameters from query params and body
// For streaming requests, we need the content from the body
useAdvancedContext = req.query.useAdvancedContext === 'true' || (req.body && req.body.useAdvancedContext === true);
showThinking = req.query.showThinking === 'true' || (req.body && req.body.showThinking === true);
content = req.body && req.body.content ? req.body.content : '';
// Add logging for GET requests
// Add detailed logging for GET requests
log.info(`LLM GET stream: sessionId=${req.params.sessionId}, useAdvancedContext=${useAdvancedContext}, showThinking=${showThinking}`);
log.info(`Parameters from query: useAdvancedContext=${req.query.useAdvancedContext}, showThinking=${req.query.showThinking}`);
log.info(`Parameters from body: useAdvancedContext=${req.body?.useAdvancedContext}, showThinking=${req.body?.showThinking}, content=${content ? `${content.substring(0, 20)}...` : 'none'}`);
}
// Get sessionId from URL params since it's part of the route
sessionId = req.params.sessionId;
// For GET requests, ensure we have the format=stream parameter
if (req.method === 'GET' && (!req.query.format || req.query.format !== 'stream')) {
throw new Error('Stream format parameter is required for GET requests');
// For GET requests, ensure we have the stream parameter
if (req.method === 'GET' && req.query.stream !== 'true') {
throw new Error('Stream parameter must be set to true for GET/streaming requests');
}
// For POST requests, validate the content
@ -443,6 +465,33 @@ class RestChatService {
log.info("Executing chat pipeline...");
// Create options object for better tracking
const pipelineOptions = {
// Force useAdvancedContext to be a boolean, no matter what
useAdvancedContext: useAdvancedContext === true,
systemPrompt: session.messages.find(m => m.role === 'system')?.content,
temperature: session.metadata.temperature,
maxTokens: session.metadata.maxTokens,
model: session.metadata.model,
// Set stream based on request type, but ensure it's explicitly a boolean value
// GET requests or format=stream parameter indicates streaming should be used
stream: !!(req.method === 'GET' || req.query.format === 'stream' || req.query.stream === 'true')
};
// Log the options to verify what's being sent to the pipeline
log.info(`Pipeline input options: ${JSON.stringify({
useAdvancedContext: pipelineOptions.useAdvancedContext,
stream: pipelineOptions.stream
})}`);
// Import the WebSocket service for direct access
const wsService = await import('../../services/ws.js');
// Create a stream callback wrapper
// This will ensure we properly handle all streaming messages
let messageContent = '';
let streamFinished = false;
// Prepare the pipeline input
const pipelineInput: ChatPipelineInput = {
messages: session.messages.map(msg => ({
@ -452,22 +501,76 @@ class RestChatService {
query: content,
noteId: session.noteContext ?? undefined,
showThinking: showThinking,
options: {
useAdvancedContext: useAdvancedContext,
systemPrompt: session.messages.find(m => m.role === 'system')?.content,
temperature: session.metadata.temperature,
maxTokens: session.metadata.maxTokens,
model: session.metadata.model,
// Set stream based on request type, but ensure it's explicitly a boolean value
// GET requests or format=stream parameter indicates streaming should be used
stream: !!(req.method === 'GET' || req.query.format === 'stream')
},
options: pipelineOptions,
streamCallback: req.method === 'GET' ? (data, done, rawChunk) => {
// Prepare response data - include both the content and raw chunk data if available
const responseData: any = { content: data, done };
try {
// Send a single WebSocket message that contains everything needed
// Only accumulate content that's actually text (not tool execution or thinking info)
if (data) {
messageContent += data;
}
// If there's tool execution information, add it to the response
if (rawChunk && rawChunk.toolExecution) {
// Create a message object with all necessary fields
const message: LLMStreamMessage = {
type: 'llm-stream',
sessionId
};
// Add content if available - either the new chunk or full content on completion
if (data) {
message.content = data;
}
// Add thinking info if available in the raw chunk
if (rawChunk?.thinking) {
message.thinking = rawChunk.thinking;
}
// Add tool execution info if available in the raw chunk
if (rawChunk?.toolExecution) {
message.toolExecution = rawChunk.toolExecution;
}
// Set done flag explicitly
message.done = done;
// On final message, include the complete content too
if (done) {
streamFinished = true;
// Always send the accumulated content with the done=true message
// This ensures the client receives the complete content even if earlier messages were missed
message.content = messageContent;
log.info(`Stream complete, sending final message with ${messageContent.length} chars of content`);
// Store the response in the session when done
session.messages.push({
role: 'assistant',
content: messageContent,
timestamp: new Date()
});
}
// Send message to all clients
wsService.default.sendMessageToAllClients(message);
// Log what was sent (first message and completion)
if (message.thinking || done) {
log.info(
`[WS-SERVER] Sending LLM stream message: sessionId=${sessionId}, content=${!!message.content}, contentLength=${message.content?.length || 0}, thinking=${!!message.thinking}, toolExecution=${!!message.toolExecution}, done=${done}`
);
}
// For GET requests, also send as server-sent events
// Prepare response data for JSON event
const responseData: any = {
content: data,
done
};
// Add tool execution if available
if (rawChunk?.toolExecution) {
responseData.toolExecution = rawChunk.toolExecution;
}
@ -477,6 +580,31 @@ class RestChatService {
if (done) {
res.end();
}
} catch (error) {
log.error(`Error in stream callback: ${error}`);
// Try to send error message
try {
wsService.default.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
error: `Stream error: ${error instanceof Error ? error.message : 'Unknown error'}`,
done: true
});
} catch (e) {
log.error(`Failed to send error message: ${e}`);
}
// End the response if not already done
try {
if (!streamFinished) {
res.write(`data: ${JSON.stringify({ error: 'Stream error', done: true })}\n\n`);
res.end();
}
} catch (e) {
log.error(`Failed to end response: ${e}`);
}
}
} : undefined
};
@ -740,7 +868,10 @@ class RestChatService {
}
/**
* Handle streaming response from LLM
* Handle streaming response via WebSocket
*
* This method processes LLM responses and sends them incrementally via WebSocket
* to the client, supporting both text content and tool execution status updates.
*/
private async handleStreamingResponse(
res: Response,
@ -749,133 +880,211 @@ class RestChatService {
service: any,
session: ChatSession
) {
// Set streaming headers once
res.setHeader('Content-Type', 'text/event-stream');
res.setHeader('Cache-Control', 'no-cache');
res.setHeader('Connection', 'keep-alive');
// The client receives a success response for their HTTP request,
// but the actual content will be streamed via WebSocket
res.json({ success: true, message: 'Streaming response started' });
// Flag to indicate we've handled the response directly
// This lets the route handler know not to process the result
(res as any).triliumResponseHandled = true;
// Import the WebSocket service
const wsService = (await import('../../services/ws.js')).default;
let messageContent = '';
const sessionId = session.id;
// Immediately send an initial message to confirm WebSocket connection is working
// This helps prevent timeouts on the client side
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
thinking: 'Preparing response...'
} as LLMStreamMessage);
try {
// Use the correct method name: generateChatCompletion
const response = await service.generateChatCompletion(aiMessages, chatOptions);
// Generate the LLM completion with streaming enabled
const response = await service.generateChatCompletion(aiMessages, {
...chatOptions,
stream: true
});
// Check for tool calls in the response
// If the model doesn't support streaming via .stream() method or returns tool calls,
// we'll handle it specially
if (response.tool_calls && response.tool_calls.length > 0) {
log.info(`========== STREAMING TOOL CALLS DETECTED ==========`);
log.info(`Response contains ${response.tool_calls.length} tool calls, executing them...`);
log.info(`CRITICAL CHECK: Tool execution is supposed to happen in the pipeline, not directly here.`);
log.info(`If tools are being executed here instead of in the pipeline, this may be a flow issue.`);
log.info(`Response came from provider: ${response.provider || 'unknown'}, model: ${response.model || 'unknown'}`);
// Send thinking state notification via WebSocket
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
thinking: 'Analyzing tools needed for this request...'
} as LLMStreamMessage);
try {
log.info(`========== STREAMING TOOL EXECUTION PATH ==========`);
log.info(`About to execute tools in streaming path (this is separate from pipeline tool execution)`);
// Execute the tools
const toolResults = await this.executeToolCalls(response);
log.info(`Successfully executed ${toolResults.length} tool calls in streaming path`);
// Make a follow-up request with the tool results
// For each tool execution, send progress update via WebSocket
for (const toolResult of toolResults) {
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
toolExecution: {
action: 'complete',
tool: toolResult.name || 'unknown',
result: toolResult.content.substring(0, 100) + (toolResult.content.length > 100 ? '...' : '')
}
} as LLMStreamMessage);
}
// Make follow-up request with tool results
const toolMessages = [...aiMessages, {
role: 'assistant',
content: response.text || '',
tool_calls: response.tool_calls
}, ...toolResults];
log.info(`Making follow-up request with ${toolResults.length} tool results`);
// Send partial response to let the client know tools are being processed
if (!res.writableEnded) {
res.write(`data: ${JSON.stringify({ content: "Processing tools... " })}\n\n`);
}
// Use non-streaming for the follow-up to get a complete response
const followUpOptions = {...chatOptions, stream: false, enableTools: false}; // Prevent infinite loops
const followUpOptions = { ...chatOptions, stream: false, enableTools: false };
const followUpResponse = await service.generateChatCompletion(toolMessages, followUpOptions);
messageContent = followUpResponse.text || "";
// Send the complete response as a single chunk
if (!res.writableEnded) {
res.write(`data: ${JSON.stringify({ content: messageContent })}\n\n`);
res.write('data: [DONE]\n\n');
res.end();
}
// Send the complete response with done flag in the same message
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
content: messageContent,
done: true
} as LLMStreamMessage);
// Store the full response for the session
// Store the response in the session
session.messages.push({
role: 'assistant',
content: messageContent,
timestamp: new Date()
});
return; // Skip the rest of the processing
return;
} catch (toolError) {
log.error(`Error executing tools: ${toolError}`);
// Continue with normal streaming response as fallback
// Send error via WebSocket with done flag
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
error: `Error executing tools: ${toolError instanceof Error ? toolError.message : 'Unknown error'}`,
done: true
} as LLMStreamMessage);
return;
}
}
// Handle streaming if the response includes a stream method
// Handle standard streaming through the stream() method
if (response.stream) {
await response.stream((chunk: { text: string; done: boolean }) => {
log.info(`Provider ${service.getName()} supports streaming via stream() method`);
try {
await response.stream(async (chunk: StreamChunk) => {
if (chunk.text) {
messageContent += chunk.text;
// Only write if the response hasn't finished
if (!res.writableEnded) {
res.write(`data: ${JSON.stringify({ content: chunk.text })}\n\n`);
// Send the chunk content via WebSocket
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
content: chunk.text,
// Include any raw data from the provider that might contain thinking/tool info
...(chunk.raw ? { raw: chunk.raw } : {})
} as LLMStreamMessage);
// Log the first chunk (useful for debugging)
if (messageContent.length === chunk.text.length) {
log.info(`First stream chunk received from ${service.getName()}`);
}
}
if (chunk.done) {
// Signal the end of the stream when done, only if not already ended
if (!res.writableEnded) {
res.write('data: [DONE]\n\n');
res.end();
// If the provider indicates this is "thinking" state, relay that
if (chunk.raw?.thinking) {
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
thinking: chunk.raw.thinking
} as LLMStreamMessage);
}
// If the provider indicates tool execution, relay that
if (chunk.raw?.toolExecution) {
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
toolExecution: chunk.raw.toolExecution
} as LLMStreamMessage);
}
// Signal completion when done
if (chunk.done) {
log.info(`Stream completed from ${service.getName()}`);
// Send the final message with both content and done flag together
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
content: messageContent, // Send the accumulated content
done: true
} as LLMStreamMessage);
}
});
log.info(`Streaming from ${service.getName()} completed successfully`);
} catch (streamError) {
log.error(`Error during streaming from ${service.getName()}: ${streamError}`);
// Report the error to the client
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
error: `Error during streaming: ${streamError instanceof Error ? streamError.message : 'Unknown error'}`,
done: true
} as LLMStreamMessage);
throw streamError;
}
} else {
// If no streaming available, send the response as a single chunk
messageContent = response.text;
// Only write if the response hasn't finished
if (!res.writableEnded) {
res.write(`data: ${JSON.stringify({ content: messageContent })}\n\n`);
res.write('data: [DONE]\n\n');
res.end();
}
log.info(`Provider ${service.getName()} does not support streaming via stream() method, falling back to single response`);
// If streaming isn't available, send the entire response at once
messageContent = response.text || '';
// Send via WebSocket - include both content and done flag in same message
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
content: messageContent,
done: true
} as LLMStreamMessage);
log.info(`Complete response sent for ${service.getName()}`);
}
// Store the full response for the session
const aiResponse = messageContent;
// Store the assistant's response in the session
// Store the full response in the session
session.messages.push({
role: 'assistant',
content: aiResponse,
content: messageContent,
timestamp: new Date()
});
} catch (streamingError: any) {
// If streaming fails and we haven't sent a response yet, throw the error
if (!res.headersSent) {
throw streamingError;
} else {
// If headers were already sent, try to send an error event
try {
if (!res.writableEnded) {
res.write(`data: ${JSON.stringify({ error: streamingError.message })}\n\n`);
res.write('data: [DONE]\n\n');
res.end();
}
} catch (e) {
log.error(`Failed to write streaming error: ${e}`);
}
}
log.error(`Streaming error: ${streamingError.message}`);
// Send error via WebSocket
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
error: `Error generating response: ${streamingError instanceof Error ? streamingError.message : 'Unknown error'}`
} as LLMStreamMessage);
// Signal completion
wsService.sendMessageToAllClients({
type: 'llm-stream',
sessionId,
done: true
} as LLMStreamMessage);
}
}

View File

@ -56,6 +56,21 @@ interface Message {
originEntityId?: string | null;
lastModifiedMs?: number;
filePath?: string;
// LLM streaming specific fields
sessionId?: string;
content?: string;
thinking?: string;
toolExecution?: {
action?: string;
tool?: string;
result?: string;
error?: string;
args?: Record<string, unknown>;
};
done?: boolean;
error?: string;
raw?: unknown;
}
type SessionParser = (req: IncomingMessage, params: {}, cb: () => void) => void;
@ -115,15 +130,25 @@ function sendMessageToAllClients(message: Message) {
const jsonStr = JSON.stringify(message);
if (webSocketServer) {
if (message.type !== "sync-failed" && message.type !== "api-log-messages") {
// Special logging for LLM streaming messages
if (message.type === "llm-stream") {
log.info(`[WS-SERVER] Sending LLM stream message: sessionId=${message.sessionId}, content=${!!message.content}, thinking=${!!message.thinking}, toolExecution=${!!message.toolExecution}, done=${!!message.done}`);
} else if (message.type !== "sync-failed" && message.type !== "api-log-messages") {
log.info(`Sending message to all clients: ${jsonStr}`);
}
let clientCount = 0;
webSocketServer.clients.forEach(function each(client) {
if (client.readyState === WebSocket.OPEN) {
client.send(jsonStr);
clientCount++;
}
});
// Log WebSocket client count for debugging
if (message.type === "llm-stream") {
log.info(`[WS-SERVER] Sent LLM stream message to ${clientCount} clients`);
}
}
}