mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-08-31 11:49:01 +08:00
get rid of this unused file too
This commit is contained in:
parent
d5efcfe0a9
commit
23480960c0
@ -10,7 +10,33 @@ import { chunkContent, semanticChunking } from './content_chunking.js';
|
||||
import type { ContentChunk, ChunkOptions } from './content_chunking.js';
|
||||
import { summarizeContent, extractKeyPoints } from './summarization.js';
|
||||
import { getParentNotes, getParentContext, getChildContext, getLinkedNotesContext } from './hierarchy.js';
|
||||
import { getSemanticContext } from './semantic_context.js';
|
||||
|
||||
/**
|
||||
* Get semantic context
|
||||
* This is now a wrapper that redirects to the new context service
|
||||
* @param noteId - The ID of the note to get context for
|
||||
* @param options - Options for semantic context
|
||||
* @returns Semantic context string
|
||||
*/
|
||||
async function getSemanticContext(
|
||||
noteId: string,
|
||||
options: { maxSimilarNotes?: number } = {}
|
||||
): Promise<string> {
|
||||
// Use the context service
|
||||
try {
|
||||
const { default: aiServiceManager } = await import('../ai_service_manager.js');
|
||||
const contextService = aiServiceManager.getInstance().getContextService();
|
||||
|
||||
if (!contextService) {
|
||||
return "Semantic context service not available.";
|
||||
}
|
||||
|
||||
return await contextService.getSemanticContext(noteId, "", options.maxSimilarNotes || 5);
|
||||
} catch (error) {
|
||||
console.error("Error getting semantic context:", error);
|
||||
return "Error retrieving semantic context.";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Options for context extraction
|
||||
@ -332,20 +358,16 @@ export class ContextExtractor {
|
||||
|
||||
/**
|
||||
* Get semantic context
|
||||
* This is now a wrapper that redirects to the new context service
|
||||
* @param noteId - The ID of the note to get context for
|
||||
* @param options - Options for semantic context
|
||||
* @returns Semantic context string
|
||||
*/
|
||||
static async getSemanticContext(
|
||||
noteId: string,
|
||||
maxSimilarNotesOrQuery: number | string = 5
|
||||
options: { maxSimilarNotes?: number } = {}
|
||||
): Promise<string> {
|
||||
// Handle both the new (number) and old (string query) parameter types
|
||||
if (typeof maxSimilarNotesOrQuery === 'string') {
|
||||
// Old API: The second parameter was a query string
|
||||
// For backward compatibility, we'll still accept this
|
||||
return getSemanticContext(noteId, { maxSimilarNotes: 5 });
|
||||
} else {
|
||||
// New API: The second parameter is maxSimilarNotes
|
||||
return getSemanticContext(noteId, { maxSimilarNotes: maxSimilarNotesOrQuery });
|
||||
}
|
||||
return getSemanticContext(noteId, options);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -353,9 +375,9 @@ export class ContextExtractor {
|
||||
*/
|
||||
async getSemanticContext(
|
||||
noteId: string,
|
||||
maxSimilarNotesOrQuery: number | string = 5
|
||||
options: { maxSimilarNotes?: number } = {}
|
||||
): Promise<string> {
|
||||
return ContextExtractor.getSemanticContext(noteId, maxSimilarNotesOrQuery);
|
||||
return ContextExtractor.getSemanticContext(noteId, options);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -436,7 +458,7 @@ export class ContextExtractor {
|
||||
if (config.includeSimilar) {
|
||||
const semanticContext = await ContextExtractor.getSemanticContext(
|
||||
noteId,
|
||||
config.maxSimilarNotes
|
||||
{ maxSimilarNotes: config.maxSimilarNotes }
|
||||
);
|
||||
|
||||
if (semanticContext && !semanticContext.includes("No semantically similar notes found.")) {
|
||||
|
@ -1,225 +0,0 @@
|
||||
/**
|
||||
* Contains functions for semantic context extraction
|
||||
* Uses more intelligent methods to determine relevant context
|
||||
*/
|
||||
|
||||
import { sanitizeHtmlContent } from './note_content.js';
|
||||
import becca from '../../../becca/becca.js';
|
||||
import { getNoteContent } from './note_content.js';
|
||||
|
||||
/**
|
||||
* Options for semantic context extraction
|
||||
*/
|
||||
export interface SemanticContextOptions {
|
||||
/**
|
||||
* Maximum number of similar notes to include
|
||||
*/
|
||||
maxSimilarNotes?: number;
|
||||
|
||||
/**
|
||||
* Whether to include note content snippets
|
||||
*/
|
||||
includeContent?: boolean;
|
||||
|
||||
/**
|
||||
* Maximum length of content snippets
|
||||
*/
|
||||
snippetLength?: number;
|
||||
|
||||
/**
|
||||
* Minimum similarity score (0-1) to include a note
|
||||
*/
|
||||
minSimilarity?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Default options for semantic context extraction
|
||||
*/
|
||||
const DEFAULT_SEMANTIC_CONTEXT_OPTIONS: Required<SemanticContextOptions> = {
|
||||
maxSimilarNotes: 5,
|
||||
includeContent: true,
|
||||
snippetLength: 200,
|
||||
minSimilarity: 0.7
|
||||
};
|
||||
|
||||
/**
|
||||
* Retrieve semantically similar notes to provide context
|
||||
* This is a simplified version without vector store integration
|
||||
* Use vector_store for actual semantic search
|
||||
*/
|
||||
export async function getSemanticContext(
|
||||
noteId: string,
|
||||
options: SemanticContextOptions = {}
|
||||
): Promise<string> {
|
||||
// Merge provided options with defaults
|
||||
const config: Required<SemanticContextOptions> = {
|
||||
...DEFAULT_SEMANTIC_CONTEXT_OPTIONS,
|
||||
...options
|
||||
};
|
||||
|
||||
try {
|
||||
// Get the current note
|
||||
const note = becca.getNote(noteId);
|
||||
|
||||
if (!note) {
|
||||
return "Note not found.";
|
||||
}
|
||||
|
||||
// Get note content for comparison
|
||||
const noteContent = await getNoteContent(noteId);
|
||||
|
||||
if (!noteContent) {
|
||||
return "No content available for similarity comparison.";
|
||||
}
|
||||
|
||||
// Get potential related notes (simplified method)
|
||||
// In real implementation, this would use vector_store.similarity methods
|
||||
const relatedNotes = await findRelatedNotes(noteId, noteContent, config);
|
||||
|
||||
// Format the semantic context result
|
||||
let context = `Semantically related notes to "${note.title}":\n\n`;
|
||||
|
||||
if (relatedNotes.length === 0) {
|
||||
context += "No semantically similar notes found.";
|
||||
return context;
|
||||
}
|
||||
|
||||
// Add each related note to the context
|
||||
for (const relatedNote of relatedNotes) {
|
||||
context += `## ${relatedNote.title}\n`;
|
||||
|
||||
if (config.includeContent && relatedNote.snippet) {
|
||||
context += `${relatedNote.snippet}\n\n`;
|
||||
}
|
||||
}
|
||||
|
||||
return context;
|
||||
} catch (error) {
|
||||
console.error(`Error getting semantic context for ${noteId}:`, error);
|
||||
return "Error retrieving semantic context.";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Find related notes based on simple heuristics
|
||||
* This is a placeholder for semantic search that would normally use vector embeddings
|
||||
*/
|
||||
async function findRelatedNotes(
|
||||
noteId: string,
|
||||
noteContent: string,
|
||||
options: Required<SemanticContextOptions>
|
||||
): Promise<{ id: string, title: string, snippet: string | null, score: number }[]> {
|
||||
const results: { id: string, title: string, snippet: string | null, score: number }[] = [];
|
||||
const note = becca.getNote(noteId);
|
||||
|
||||
if (!note) {
|
||||
return results;
|
||||
}
|
||||
|
||||
// 1. Check siblings (notes with the same parent)
|
||||
const parentBranches = note.getParentBranches();
|
||||
const processedNotes = new Set<string>();
|
||||
processedNotes.add(noteId); // Don't include the current note
|
||||
|
||||
// Process parent branches to find siblings
|
||||
for (const branch of parentBranches) {
|
||||
if (!branch.parentNote) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const parentNote = branch.parentNote;
|
||||
const siblingNotes = parentNote.getChildNotes().filter(n => n.noteId !== noteId);
|
||||
|
||||
for (const siblingNote of siblingNotes) {
|
||||
if (processedNotes.has(siblingNote.noteId)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
processedNotes.add(siblingNote.noteId);
|
||||
|
||||
const siblingContent = await getNoteContent(siblingNote.noteId);
|
||||
if (!siblingContent) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Calculate a very simple similarity score
|
||||
const score = calculateSimpleTextSimilarity(noteContent, siblingContent);
|
||||
|
||||
if (score >= options.minSimilarity) {
|
||||
results.push({
|
||||
id: siblingNote.noteId,
|
||||
title: siblingNote.title,
|
||||
snippet: siblingContent.substring(0, options.snippetLength) + '...',
|
||||
score
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Check notes connected by relations
|
||||
const relations = note.getRelations();
|
||||
for (const relation of relations) {
|
||||
const targetNoteId = relation.value;
|
||||
|
||||
if (!targetNoteId || processedNotes.has(targetNoteId)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
processedNotes.add(targetNoteId);
|
||||
|
||||
const targetNote = becca.getNote(targetNoteId);
|
||||
if (!targetNote) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const targetContent = await getNoteContent(targetNoteId);
|
||||
if (!targetContent) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Relations are already semantically connected, so give them a boost
|
||||
const score = calculateSimpleTextSimilarity(noteContent, targetContent) + 0.2;
|
||||
|
||||
results.push({
|
||||
id: targetNoteId,
|
||||
title: targetNote.title,
|
||||
snippet: targetContent.substring(0, options.snippetLength) + '...',
|
||||
score: Math.min(score, 1.0) // Cap at 1.0
|
||||
});
|
||||
}
|
||||
|
||||
// Sort by similarity score (highest first) and limit
|
||||
return results
|
||||
.sort((a, b) => b.score - a.score)
|
||||
.slice(0, options.maxSimilarNotes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate a simple text similarity based on shared words
|
||||
* This is a very basic implementation and should be replaced with actual embedding similarity
|
||||
*/
|
||||
function calculateSimpleTextSimilarity(text1: string, text2: string): number {
|
||||
// Clean and tokenize the texts
|
||||
const cleanText1 = sanitizeHtmlContent(text1).toLowerCase();
|
||||
const cleanText2 = sanitizeHtmlContent(text2).toLowerCase();
|
||||
|
||||
// Get unique words (case insensitive)
|
||||
const words1 = new Set(cleanText1.split(/\W+/).filter(w => w.length > 3));
|
||||
const words2 = new Set(cleanText2.split(/\W+/).filter(w => w.length > 3));
|
||||
|
||||
// No meaningful comparison possible if either text has no significant words
|
||||
if (words1.size === 0 || words2.size === 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Count shared words
|
||||
let sharedCount = 0;
|
||||
for (const word of words1) {
|
||||
if (words2.has(word)) {
|
||||
sharedCount++;
|
||||
}
|
||||
}
|
||||
|
||||
// Jaccard similarity: intersection size / union size
|
||||
return sharedCount / (words1.size + words2.size - sharedCount);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user