Notes/src/services/llm/ollama_service.ts

87 lines
3.0 KiB
TypeScript
Raw Normal View History

2025-03-02 19:39:10 -08:00
import options from '../options.js';
import { BaseAIService } from './base_ai_service.js';
import type { ChatCompletionOptions, ChatResponse, Message } from './ai_interface.js';
export class OllamaService extends BaseAIService {
constructor() {
super('Ollama');
}
isAvailable(): boolean {
return super.isAvailable() &&
options.getOption('ollamaEnabled') === 'true' &&
!!options.getOption('ollamaBaseUrl');
}
async generateChatCompletion(messages: Message[], opts: ChatCompletionOptions = {}): Promise<ChatResponse> {
if (!this.isAvailable()) {
throw new Error('Ollama service is not available. Check Ollama settings.');
}
const baseUrl = options.getOption('ollamaBaseUrl') || 'http://localhost:11434';
const model = opts.model || options.getOption('ollamaDefaultModel') || 'llama2';
const temperature = opts.temperature !== undefined
? opts.temperature
: parseFloat(options.getOption('aiTemperature') || '0.7');
const systemPrompt = this.getSystemPrompt(opts.systemPrompt || options.getOption('aiSystemPrompt'));
// Format messages for Ollama
const formattedMessages = this.formatMessages(messages, systemPrompt);
try {
const endpoint = `${baseUrl.replace(/\/+$/, '')}/api/chat`;
const response = await fetch(endpoint, {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
model,
messages: formattedMessages,
options: {
temperature,
}
})
});
if (!response.ok) {
const errorBody = await response.text();
throw new Error(`Ollama API error: ${response.status} ${response.statusText} - ${errorBody}`);
}
const data = await response.json();
return {
text: data.message?.content || "No response from Ollama",
model: data.model || model,
provider: this.getName(),
usage: {
// Ollama doesn't provide token usage in the same format
totalTokens: data.eval_count || data.prompt_eval_count || 0
}
};
} catch (error) {
console.error('Ollama service error:', error);
throw error;
}
}
private formatMessages(messages: Message[], systemPrompt: string): any[] {
// Add system message if it doesn't exist
const hasSystemMessage = messages.some(m => m.role === 'system');
let resultMessages = [...messages];
if (!hasSystemMessage && systemPrompt) {
resultMessages.unshift({
role: 'system',
content: systemPrompt
});
}
// Ollama uses the same format as OpenAI for messages
return resultMessages;
}
}