mirror of
https://github.com/TriliumNext/Notes.git
synced 2025-07-29 02:52:27 +08:00
270 lines
10 KiB
TypeScript
270 lines
10 KiB
TypeScript
![]() |
import type { ChatPipelineInput, ChatPipelineConfig, PipelineMetrics, StreamCallback } from './interfaces.js';
|
||
|
import type { ChatResponse, StreamChunk } from '../ai_interface.js';
|
||
|
import { ContextExtractionStage } from './stages/context_extraction_stage.js';
|
||
|
import { SemanticContextExtractionStage } from './stages/semantic_context_extraction_stage.js';
|
||
|
import { AgentToolsContextStage } from './stages/agent_tools_context_stage.js';
|
||
|
import { MessagePreparationStage } from './stages/message_preparation_stage.js';
|
||
|
import { ModelSelectionStage } from './stages/model_selection_stage.js';
|
||
|
import { LLMCompletionStage } from './stages/llm_completion_stage.js';
|
||
|
import { ResponseProcessingStage } from './stages/response_processing_stage.js';
|
||
|
import log from '../../log.js';
|
||
|
|
||
|
/**
|
||
|
* Pipeline for managing the entire chat flow
|
||
|
* Implements a modular, composable architecture where each stage is a separate component
|
||
|
*/
|
||
|
export class ChatPipeline {
|
||
|
stages: {
|
||
|
contextExtraction: ContextExtractionStage;
|
||
|
semanticContextExtraction: SemanticContextExtractionStage;
|
||
|
agentToolsContext: AgentToolsContextStage;
|
||
|
messagePreparation: MessagePreparationStage;
|
||
|
modelSelection: ModelSelectionStage;
|
||
|
llmCompletion: LLMCompletionStage;
|
||
|
responseProcessing: ResponseProcessingStage;
|
||
|
};
|
||
|
|
||
|
config: ChatPipelineConfig;
|
||
|
metrics: PipelineMetrics;
|
||
|
|
||
|
/**
|
||
|
* Create a new chat pipeline
|
||
|
* @param config Optional pipeline configuration
|
||
|
*/
|
||
|
constructor(config?: Partial<ChatPipelineConfig>) {
|
||
|
// Initialize all pipeline stages
|
||
|
this.stages = {
|
||
|
contextExtraction: new ContextExtractionStage(),
|
||
|
semanticContextExtraction: new SemanticContextExtractionStage(),
|
||
|
agentToolsContext: new AgentToolsContextStage(),
|
||
|
messagePreparation: new MessagePreparationStage(),
|
||
|
modelSelection: new ModelSelectionStage(),
|
||
|
llmCompletion: new LLMCompletionStage(),
|
||
|
responseProcessing: new ResponseProcessingStage()
|
||
|
};
|
||
|
|
||
|
// Set default configuration values
|
||
|
this.config = {
|
||
|
enableStreaming: true,
|
||
|
enableMetrics: true,
|
||
|
maxToolCallIterations: 5,
|
||
|
...config
|
||
|
};
|
||
|
|
||
|
// Initialize metrics
|
||
|
this.metrics = {
|
||
|
totalExecutions: 0,
|
||
|
averageExecutionTime: 0,
|
||
|
stageMetrics: {}
|
||
|
};
|
||
|
|
||
|
// Initialize stage metrics
|
||
|
Object.keys(this.stages).forEach(stageName => {
|
||
|
this.metrics.stageMetrics[stageName] = {
|
||
|
totalExecutions: 0,
|
||
|
averageExecutionTime: 0
|
||
|
};
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Execute the chat pipeline
|
||
|
* This is the main entry point that orchestrates all pipeline stages
|
||
|
*/
|
||
|
async execute(input: ChatPipelineInput): Promise<ChatResponse> {
|
||
|
log.info(`Executing chat pipeline with ${input.messages.length} messages`);
|
||
|
const startTime = Date.now();
|
||
|
this.metrics.totalExecutions++;
|
||
|
|
||
|
// Initialize streaming handler if requested
|
||
|
let streamCallback = input.streamCallback;
|
||
|
let accumulatedText = '';
|
||
|
|
||
|
try {
|
||
|
// Extract content length for model selection
|
||
|
let contentLength = 0;
|
||
|
for (const message of input.messages) {
|
||
|
contentLength += message.content.length;
|
||
|
}
|
||
|
|
||
|
// Determine which pipeline flow to use
|
||
|
let context: string | undefined;
|
||
|
|
||
|
// For context-aware chats, get the appropriate context
|
||
|
if (input.noteId && input.query) {
|
||
|
const contextStartTime = Date.now();
|
||
|
if (input.showThinking) {
|
||
|
// Get enhanced context with agent tools if thinking is enabled
|
||
|
const agentContext = await this.stages.agentToolsContext.execute({
|
||
|
noteId: input.noteId,
|
||
|
query: input.query,
|
||
|
showThinking: input.showThinking
|
||
|
});
|
||
|
context = agentContext.context;
|
||
|
this.updateStageMetrics('agentToolsContext', contextStartTime);
|
||
|
} else {
|
||
|
// Get semantic context for regular queries
|
||
|
const semanticContext = await this.stages.semanticContextExtraction.execute({
|
||
|
noteId: input.noteId,
|
||
|
query: input.query
|
||
|
});
|
||
|
context = semanticContext.context;
|
||
|
this.updateStageMetrics('semanticContextExtraction', contextStartTime);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Select the appropriate model based on query complexity and content length
|
||
|
const modelSelectionStartTime = Date.now();
|
||
|
const modelSelection = await this.stages.modelSelection.execute({
|
||
|
options: input.options,
|
||
|
query: input.query,
|
||
|
contentLength
|
||
|
});
|
||
|
this.updateStageMetrics('modelSelection', modelSelectionStartTime);
|
||
|
|
||
|
// Prepare messages with context and system prompt
|
||
|
const messagePreparationStartTime = Date.now();
|
||
|
const preparedMessages = await this.stages.messagePreparation.execute({
|
||
|
messages: input.messages,
|
||
|
context,
|
||
|
systemPrompt: input.options?.systemPrompt,
|
||
|
options: modelSelection.options
|
||
|
});
|
||
|
this.updateStageMetrics('messagePreparation', messagePreparationStartTime);
|
||
|
|
||
|
// Generate completion using the LLM
|
||
|
const llmStartTime = Date.now();
|
||
|
|
||
|
// Setup streaming handler if streaming is enabled and callback provided
|
||
|
const enableStreaming = this.config.enableStreaming &&
|
||
|
modelSelection.options.stream !== false &&
|
||
|
typeof streamCallback === 'function';
|
||
|
|
||
|
if (enableStreaming) {
|
||
|
// Make sure stream is enabled in options
|
||
|
modelSelection.options.stream = true;
|
||
|
}
|
||
|
|
||
|
const completion = await this.stages.llmCompletion.execute({
|
||
|
messages: preparedMessages.messages,
|
||
|
options: modelSelection.options
|
||
|
});
|
||
|
this.updateStageMetrics('llmCompletion', llmStartTime);
|
||
|
|
||
|
// Handle streaming if enabled and available
|
||
|
if (enableStreaming && completion.response.stream && streamCallback) {
|
||
|
// Setup stream handler that passes chunks through response processing
|
||
|
await completion.response.stream(async (chunk: StreamChunk) => {
|
||
|
// Process the chunk text
|
||
|
const processedChunk = await this.processStreamChunk(chunk, input.options);
|
||
|
|
||
|
// Accumulate text for final response
|
||
|
accumulatedText += processedChunk.text;
|
||
|
|
||
|
// Forward to callback
|
||
|
await streamCallback!(processedChunk.text, processedChunk.done);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// For non-streaming responses, process the full response
|
||
|
const processStartTime = Date.now();
|
||
|
const processed = await this.stages.responseProcessing.execute({
|
||
|
response: completion.response,
|
||
|
options: input.options
|
||
|
});
|
||
|
this.updateStageMetrics('responseProcessing', processStartTime);
|
||
|
|
||
|
// Combine response with processed text, using accumulated text if streamed
|
||
|
const finalResponse: ChatResponse = {
|
||
|
...completion.response,
|
||
|
text: accumulatedText || processed.text
|
||
|
};
|
||
|
|
||
|
const endTime = Date.now();
|
||
|
const executionTime = endTime - startTime;
|
||
|
|
||
|
// Update overall average execution time
|
||
|
this.metrics.averageExecutionTime =
|
||
|
(this.metrics.averageExecutionTime * (this.metrics.totalExecutions - 1) + executionTime) /
|
||
|
this.metrics.totalExecutions;
|
||
|
|
||
|
log.info(`Chat pipeline completed in ${executionTime}ms`);
|
||
|
|
||
|
return finalResponse;
|
||
|
} catch (error: any) {
|
||
|
log.error(`Error in chat pipeline: ${error.message}`);
|
||
|
throw error;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Process a stream chunk through the response processing stage
|
||
|
*/
|
||
|
private async processStreamChunk(chunk: StreamChunk, options?: any): Promise<StreamChunk> {
|
||
|
try {
|
||
|
// Only process non-empty chunks
|
||
|
if (!chunk.text) return chunk;
|
||
|
|
||
|
// Create a minimal response object for the processor
|
||
|
const miniResponse = {
|
||
|
text: chunk.text,
|
||
|
model: 'streaming',
|
||
|
provider: 'streaming'
|
||
|
};
|
||
|
|
||
|
// Process the chunk text
|
||
|
const processed = await this.stages.responseProcessing.execute({
|
||
|
response: miniResponse,
|
||
|
options: options
|
||
|
});
|
||
|
|
||
|
// Return processed chunk
|
||
|
return {
|
||
|
...chunk,
|
||
|
text: processed.text
|
||
|
};
|
||
|
} catch (error) {
|
||
|
// On error, return original chunk
|
||
|
log.error(`Error processing stream chunk: ${error}`);
|
||
|
return chunk;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Update metrics for a pipeline stage
|
||
|
*/
|
||
|
private updateStageMetrics(stageName: string, startTime: number) {
|
||
|
if (!this.config.enableMetrics) return;
|
||
|
|
||
|
const executionTime = Date.now() - startTime;
|
||
|
const metrics = this.metrics.stageMetrics[stageName];
|
||
|
|
||
|
metrics.totalExecutions++;
|
||
|
metrics.averageExecutionTime =
|
||
|
(metrics.averageExecutionTime * (metrics.totalExecutions - 1) + executionTime) /
|
||
|
metrics.totalExecutions;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the current pipeline metrics
|
||
|
*/
|
||
|
getMetrics(): PipelineMetrics {
|
||
|
return this.metrics;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reset pipeline metrics
|
||
|
*/
|
||
|
resetMetrics(): void {
|
||
|
this.metrics.totalExecutions = 0;
|
||
|
this.metrics.averageExecutionTime = 0;
|
||
|
|
||
|
Object.keys(this.metrics.stageMetrics).forEach(stageName => {
|
||
|
this.metrics.stageMetrics[stageName] = {
|
||
|
totalExecutions: 0,
|
||
|
averageExecutionTime: 0
|
||
|
};
|
||
|
});
|
||
|
}
|
||
|
}
|