198 lines
8.1 KiB
Python
198 lines
8.1 KiB
Python
"""
|
||
药店销售预测系统 - XGBoost 模型训练器 (插件式)
|
||
"""
|
||
|
||
import time
|
||
import os
|
||
import pandas as pd
|
||
import numpy as np
|
||
import xgboost as xgb
|
||
from sklearn.preprocessing import MinMaxScaler
|
||
from xgboost.callback import EarlyStopping
|
||
|
||
import json
|
||
import torch
|
||
|
||
# 导入核心工具
|
||
from utils.data_utils import prepare_tabular_data
|
||
from analysis.metrics import evaluate_model
|
||
from utils.model_manager import model_manager
|
||
from models.model_registry import register_trainer
|
||
from utils.visualization import plot_loss_curve # 导入绘图函数
|
||
|
||
def train_product_model_with_xgboost(
|
||
model_identifier: str,
|
||
training_df: pd.DataFrame,
|
||
feature_list: list,
|
||
training_mode: str,
|
||
epochs: int = 500, # XGBoost通常需要更多轮次
|
||
sequence_length: int = 1, # 对于非序列模型,此参数意义不大,但为兼容性保留
|
||
forecast_horizon: int = 1,
|
||
model_dir: str = 'saved_models',
|
||
product_id: str = None,
|
||
store_id: str = None,
|
||
aggregation_method: str = None,
|
||
version: str = None,
|
||
**kwargs
|
||
):
|
||
"""
|
||
使用 XGBoost 模型训练产品销售预测模型 (新数据管道版)。
|
||
"""
|
||
print(f"🚀 XGBoost训练器启动: model_identifier='{model_identifier}'")
|
||
|
||
created_files = []
|
||
success = False
|
||
|
||
try:
|
||
# --- 1. 数据准备和验证 ---
|
||
if training_df.empty:
|
||
raise ValueError("用于训练的数据为空")
|
||
|
||
product_name = training_df['product_name'].iloc[0] if 'product_name' in training_df.columns else model_identifier
|
||
|
||
# --- 2. 数据预处理和适配 ---
|
||
print(f"[XGBoost] 开始数据预处理,使用 {len(feature_list)} 个预选特征...")
|
||
|
||
trainX, testX, trainY, testY, scaler_X, scaler_y, used_features = prepare_tabular_data(
|
||
training_df=training_df,
|
||
feature_list=feature_list,
|
||
target_column='net_sales_quantity'
|
||
)
|
||
|
||
dtrain = xgb.DMatrix(trainX, label=trainY)
|
||
dtest = xgb.DMatrix(testX, label=testY)
|
||
|
||
# --- 3. 模型训练 ---
|
||
xgb_params = {
|
||
'learning_rate': kwargs.get('learning_rate', 0.08),
|
||
'subsample': kwargs.get('subsample', 0.75),
|
||
'colsample_bytree': kwargs.get('colsample_bytree', 1),
|
||
'max_depth': kwargs.get('max_depth', 7),
|
||
'gamma': kwargs.get('gamma', 0),
|
||
'objective': 'reg:squarederror',
|
||
'eval_metric': 'rmse',
|
||
'n_jobs': -1
|
||
}
|
||
# 核心修复:使用前端传入的epochs作为训练轮次 (num_boost_round)
|
||
n_estimators = epochs
|
||
print(f"开始训练XGBoost模型 (使用核心xgb.train API),共 {n_estimators} 轮...")
|
||
|
||
current_version = model_manager.peek_next_version(
|
||
model_type='xgboost', product_id=product_id, store_id=store_id,
|
||
training_mode=training_mode, aggregation_method=aggregation_method
|
||
)
|
||
print(f"🔒 本次训练版本锁定为: {current_version}")
|
||
|
||
start_time = time.time()
|
||
evals_result = {}
|
||
model = xgb.train(
|
||
params=xgb_params, dtrain=dtrain, num_boost_round=n_estimators,
|
||
evals=[(dtrain, 'train'), (dtest, 'test')],
|
||
early_stopping_rounds=50, evals_result=evals_result, verbose_eval=False
|
||
)
|
||
training_time = time.time() - start_time
|
||
print(f"XGBoost模型训练完成,耗时: {training_time:.2f}秒")
|
||
|
||
# --- 4. 模型评估 ---
|
||
test_pred = model.predict(dtest, iteration_range=(0, model.best_iteration))
|
||
|
||
# 核心修复:确保真实值和预测值都进行反归一化
|
||
test_pred_inv = scaler_y.inverse_transform(test_pred.reshape(-1, 1))
|
||
test_true_inv = scaler_y.inverse_transform(testY.reshape(-1, 1))
|
||
|
||
metrics = evaluate_model(test_true_inv.flatten(), test_pred_inv.flatten())
|
||
metrics.update({'training_time': training_time, 'best_iteration': model.best_iteration})
|
||
print(f"\n模型评估指标 (真实值): MSE={metrics['mse']:.4f}, RMSE={metrics['rmse']:.4f}, MAE={metrics['mae']:.4f}, R²={metrics['r2']:.4f}, MAPE={metrics['mape']:.2f}%")
|
||
|
||
# --- 5. 保存工件 ---
|
||
scope = training_mode
|
||
identifier = product_id if scope == 'product' else store_id if scope == 'store' else aggregation_method if scope == 'global' else product_name
|
||
|
||
# 核心修复:安全地提取损失历史数据
|
||
train_losses = evals_result.get('train', {}).get('rmse', [])
|
||
test_losses = evals_result.get('test', {}).get('rmse', [])
|
||
|
||
# 准备X轴数据 (boosting rounds)
|
||
rounds = list(range(1, len(train_losses) + 1)) if train_losses else []
|
||
|
||
# 绘制损失曲线
|
||
loss_curve_path = plot_loss_curve(
|
||
train_losses=train_losses, val_losses=test_losses,
|
||
model_type='xgboost', scope=scope, identifier=identifier,
|
||
version=current_version, model_dir=model_dir,
|
||
x_axis_data=rounds # 传递X轴数据
|
||
)
|
||
created_files.append(loss_curve_path)
|
||
print(f"📈 损失曲线已保存: {loss_curve_path}")
|
||
|
||
# 准备 Checkpoint
|
||
config = {
|
||
'model_type': 'xgboost',
|
||
'features': used_features,
|
||
'sequence_length': sequence_length, # For compatibility
|
||
'params': xgb_params,
|
||
'best_iteration': model.best_iteration
|
||
}
|
||
checkpoint = {
|
||
'model_raw': model.save_raw(), # 序列化XGBoost模型为byte array
|
||
'config': config,
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y
|
||
}
|
||
|
||
# 保存最终模型 Checkpoint
|
||
base_model_filename = model_manager.generate_model_filename(
|
||
model_type='xgboost', version=current_version, training_mode=training_mode,
|
||
product_id=product_id, store_id=store_id, aggregation_method=aggregation_method
|
||
)
|
||
final_model_path = os.path.join(model_dir, base_model_filename)
|
||
torch.save(checkpoint, final_model_path)
|
||
created_files.append(final_model_path)
|
||
print(f"✅ 最终模型Checkpoint已创建: {final_model_path}")
|
||
|
||
# 保存最佳模型 Checkpoint (内容相同,仅文件名不同)
|
||
best_model_filename = model_manager.generate_model_filename(
|
||
model_type='xgboost', version=f"{current_version}_best", training_mode=training_mode,
|
||
product_id=product_id, store_id=store_id, aggregation_method=aggregation_method
|
||
)
|
||
best_model_path = os.path.join(model_dir, best_model_filename)
|
||
torch.save(checkpoint, best_model_path)
|
||
created_files.append(best_model_path)
|
||
print(f"✅ 最佳模型Checkpoint已创建: {best_model_path}")
|
||
|
||
# 保存损失历史
|
||
base_filename = os.path.splitext(final_model_path)[0]
|
||
loss_data_filename = f"{base_filename}_loss_curve_data.json"
|
||
loss_data_path = os.path.join(model_dir, loss_data_filename)
|
||
with open(loss_data_path, 'w') as f:
|
||
json.dump({
|
||
'epochs': rounds, # 使用正确的boosting rounds作为epochs
|
||
'train_loss': train_losses,
|
||
'test_loss': test_losses
|
||
}, f)
|
||
created_files.append(loss_data_path)
|
||
print(f"💾 损失历史数据已保存: {loss_data_path}")
|
||
|
||
artifacts = {
|
||
"versioned_model": final_model_path,
|
||
"loss_curve_plot": loss_curve_path,
|
||
"loss_curve_data": loss_data_path,
|
||
"best_model": best_model_path,
|
||
"version": current_version
|
||
}
|
||
|
||
success = True
|
||
return metrics, artifacts
|
||
finally:
|
||
if not success:
|
||
print("❌ 训练失败,正在回滚并删除已创建的文件...")
|
||
for file_path in created_files:
|
||
try:
|
||
if os.path.exists(file_path):
|
||
os.remove(file_path)
|
||
print(f" - 已删除: {file_path}")
|
||
except OSError as e:
|
||
print(f" - 警告: 删除文件 '{file_path}' 失败: {e}")
|
||
|
||
# --- 将此训练器注册到系统中 ---
|
||
register_trainer('xgboost', train_product_model_with_xgboost) |