**核心目标**: 将新的 `ModelManager` 统一应用到项目中所有剩余的模型训练器,并重构核心调用逻辑,确保整个训练链路的架构一致性。 **1. 修改 `server/trainers/kan_trainer.py`** * **内容**: 完全重写了 `kan_trainer.py`。 * **适配接口**: 函数签名与 `mlstm_trainer` 对齐,增加了 `socketio`, `task_id`, `patience` 等参数。 * **集成 `ModelManager`**: 移除了所有旧的、手动的保存逻辑,改为在训练开始时调用 `model_manager` 获取版本号和路径。 * **标准化产物保存**: 所有产物(模型、元数据、检查点、损失曲线)均通过 `model_manager.save_model_artifact()` 保存。 * **增加健壮性**: 引入了早停(Early Stopping)和保存最佳检查点(Best Checkpoint)的逻辑。 **2. 修改 `server/trainers/tcn_trainer.py`** * **内容**: 完全重写了 `tcn_trainer.py`,应用了与 `kan_trainer` 完全相同的重构模式。 * 移除了旧的 `save_checkpoint` 辅助函数和基于 `core.config` 的版本管理。 * 全面转向使用 `model_manager` 进行版本控制和文件保存。 * 统一了函数签名和进度反馈逻辑。 **3. 修改 `server/trainers/transformer_trainer.py`** * **内容**: 完全重写了 `transformer_trainer.py`,完成了对所有训练器的统一重构。 * 移除了所有遗留的、基于文件名的路径拼接和保存逻辑。 * 实现了与其它训练器一致的、基于 `ModelManager` 的标准化训练流程。 **4. 修改 `server/core/predictor.py`** * **内容**: 对核心预测器类 `PharmacyPredictor` 进行了彻底重构。 * **统一调用接口**: `train_model` 方法现在以完全一致的方式调用所有(`mlstm`, `kan`, `tcn`, `transformer`)训练器。 * **移除旧逻辑**: 删除了 `_parse_model_filename` 等所有基于文件名解析的旧方法。 * **适配 `ModelManager`**: `list_models` 和 `delete_model` 等方法现在直接调用 `model_manager` 的相应功能,不再自己实现逻辑。 * **简化 `predict`**: 预测方法现在直接接收标准化的模型版本路径 (`model_version_path`) 作为输入,逻辑更清晰。
276 lines
11 KiB
Python
276 lines
11 KiB
Python
"""
|
||
药店销售预测系统 - KAN模型训练函数 (已重构)
|
||
"""
|
||
|
||
import os
|
||
import time
|
||
import pandas as pd
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
from torch.utils.data import DataLoader
|
||
from sklearn.preprocessing import MinMaxScaler
|
||
import matplotlib.pyplot as plt
|
||
from tqdm import tqdm
|
||
from datetime import datetime
|
||
|
||
from models.kan_model import KANForecaster
|
||
from models.optimized_kan_forecaster import OptimizedKANForecaster
|
||
from utils.data_utils import create_dataset, PharmacyDataset
|
||
from analysis.metrics import evaluate_model
|
||
from core.config import DEVICE, LOOK_BACK, FORECAST_HORIZON
|
||
from utils.model_manager import model_manager
|
||
|
||
def train_product_model_with_kan(
|
||
product_id,
|
||
product_df=None,
|
||
store_id=None,
|
||
training_mode='product',
|
||
aggregation_method='sum',
|
||
epochs=50,
|
||
use_optimized=False,
|
||
socketio=None,
|
||
task_id=None,
|
||
progress_callback=None,
|
||
patience=10,
|
||
learning_rate=0.001
|
||
):
|
||
"""
|
||
使用KAN模型训练产品销售预测模型 (已适配新的ModelManager)
|
||
"""
|
||
|
||
def emit_progress(message, progress=None, metrics=None):
|
||
"""发送训练进度到前端"""
|
||
progress_data = {
|
||
'task_id': task_id,
|
||
'message': f"[KAN] {message}",
|
||
'timestamp': time.time()
|
||
}
|
||
if progress is not None:
|
||
progress_data['progress'] = progress
|
||
if metrics is not None:
|
||
progress_data['metrics'] = metrics
|
||
|
||
if progress_callback:
|
||
try:
|
||
progress_callback(progress_data)
|
||
except Exception as e:
|
||
print(f"[KAN] 进度回调失败: {e}")
|
||
|
||
if socketio and task_id:
|
||
try:
|
||
socketio.emit('training_progress', progress_data, namespace='/training')
|
||
except Exception as e:
|
||
print(f"[KAN] WebSocket发送失败: {e}")
|
||
|
||
print(f"[KAN] {message}", flush=True)
|
||
|
||
emit_progress("开始KAN模型训练...")
|
||
|
||
# 1. 确定模型标识符和版本
|
||
model_type = 'optimized_kan' if use_optimized else 'kan'
|
||
if training_mode == 'store':
|
||
scope = f"{store_id}_{product_id}"
|
||
elif training_mode == 'global':
|
||
scope = f"{product_id}" if product_id else "all"
|
||
else: # 'product' mode
|
||
scope = f"{product_id}_all"
|
||
|
||
model_identifier = model_manager.get_model_identifier(model_type, training_mode, scope, aggregation_method)
|
||
version = model_manager.get_next_version_number(model_identifier)
|
||
|
||
emit_progress(f"开始训练 {model_type} 模型 v{version}")
|
||
|
||
# 2. 获取模型版本路径
|
||
model_version_path = model_manager.get_model_version_path(model_type, training_mode, scope, version, aggregation_method)
|
||
emit_progress(f"模型将保存到: {model_version_path}")
|
||
|
||
# 3. 数据加载和预处理
|
||
if product_df is None:
|
||
# 此处保留了原有的数据加载逻辑作为后备
|
||
from utils.multi_store_data_utils import load_multi_store_data, get_store_product_sales_data, aggregate_multi_store_data
|
||
try:
|
||
if training_mode == 'store' and store_id:
|
||
product_df = get_store_product_sales_data(store_id, product_id, 'pharmacy_sales_multi_store.csv')
|
||
elif training_mode == 'global':
|
||
product_df = aggregate_multi_store_data(product_id, aggregation_method=aggregation_method, file_path='pharmacy_sales_multi_store.csv')
|
||
else:
|
||
product_df = load_multi_store_data('pharmacy_sales_multi_store.csv', product_id=product_id)
|
||
except Exception as e:
|
||
emit_progress(f"多店铺数据加载失败: {e}, 尝试后备方案...")
|
||
df = pd.read_excel('pharmacy_sales.xlsx')
|
||
product_df = df[df['product_id'] == product_id].sort_values('date')
|
||
|
||
if training_mode == 'store' and store_id:
|
||
training_scope = f"店铺 {store_id}"
|
||
elif training_mode == 'global':
|
||
training_scope = f"全局聚合({aggregation_method})"
|
||
else:
|
||
training_scope = "所有店铺"
|
||
|
||
min_required_samples = LOOK_BACK + FORECAST_HORIZON
|
||
if len(product_df) < min_required_samples:
|
||
error_msg = f"数据不足: 需要 {min_required_samples} 天, 实际 {len(product_df)} 天。"
|
||
emit_progress(f"训练失败:{error_msg}")
|
||
raise ValueError(error_msg)
|
||
|
||
product_df = product_df.sort_values('date')
|
||
product_name = product_df['product_name'].iloc[0]
|
||
|
||
emit_progress(f"训练产品: '{product_name}' (ID: {product_id}) - {training_scope}")
|
||
emit_progress(f"使用设备: {DEVICE}, 数据量: {len(product_df)} 条")
|
||
|
||
features = ['sales', 'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature']
|
||
X = product_df[features].values
|
||
y = product_df[['sales']].values
|
||
|
||
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
||
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
||
X_scaled = scaler_X.fit_transform(X)
|
||
y_scaled = scaler_y.fit_transform(y)
|
||
|
||
train_size = int(len(X_scaled) * 0.8)
|
||
X_train, X_test = X_scaled[:train_size], X_scaled[train_size:]
|
||
y_train, y_test = y_scaled[:train_size], y_scaled[train_size:]
|
||
|
||
trainX, trainY = create_dataset(X_train, y_train, LOOK_BACK, FORECAST_HORIZON)
|
||
testX, testY = create_dataset(X_test, y_test, LOOK_BACK, FORECAST_HORIZON)
|
||
|
||
train_loader = DataLoader(PharmacyDataset(torch.Tensor(trainX), torch.Tensor(trainY)), batch_size=32, shuffle=True)
|
||
test_loader = DataLoader(PharmacyDataset(torch.Tensor(testX), torch.Tensor(testY)), batch_size=32, shuffle=False)
|
||
|
||
# 4. 模型初始化
|
||
input_dim = X_train.shape[1]
|
||
output_dim = FORECAST_HORIZON
|
||
hidden_size = 64
|
||
|
||
if use_optimized:
|
||
model = OptimizedKANForecaster(input_features=input_dim, hidden_sizes=[hidden_size, hidden_size*2, hidden_size], output_sequence_length=output_dim)
|
||
else:
|
||
model = KANForecaster(input_features=input_dim, hidden_sizes=[hidden_size, hidden_size*2, hidden_size], output_sequence_length=output_dim)
|
||
|
||
model = model.to(DEVICE)
|
||
criterion = nn.MSELoss()
|
||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||
|
||
emit_progress("数据预处理完成,开始模型训练...", progress=10)
|
||
|
||
# 5. 训练循环
|
||
train_losses, test_losses = [], []
|
||
start_time = time.time()
|
||
best_loss = float('inf')
|
||
epochs_no_improve = 0
|
||
|
||
for epoch in range(epochs):
|
||
model.train()
|
||
epoch_loss = 0
|
||
for X_batch, y_batch in train_loader:
|
||
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
||
if y_batch.dim() == 2: y_batch = y_batch.unsqueeze(-1)
|
||
|
||
outputs = model(X_batch)
|
||
if outputs.dim() == 2: outputs = outputs.unsqueeze(-1)
|
||
|
||
loss = criterion(outputs, y_batch)
|
||
if hasattr(model, 'regularization_loss'):
|
||
loss = loss + model.regularization_loss() * 0.01
|
||
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
epoch_loss += loss.item()
|
||
|
||
train_loss = epoch_loss / len(train_loader)
|
||
train_losses.append(train_loss)
|
||
|
||
model.eval()
|
||
test_loss = 0
|
||
with torch.no_grad():
|
||
for X_batch, y_batch in test_loader:
|
||
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
||
if y_batch.dim() == 2: y_batch = y_batch.unsqueeze(-1)
|
||
outputs = model(X_batch)
|
||
if outputs.dim() == 2: outputs = outputs.unsqueeze(-1)
|
||
loss = criterion(outputs, y_batch)
|
||
test_loss += loss.item()
|
||
|
||
test_loss /= len(test_loader)
|
||
test_losses.append(test_loss)
|
||
|
||
progress_percentage = 10 + ((epoch + 1) / epochs) * 85
|
||
emit_progress(f"Epoch {epoch+1}/{epochs} - Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}", progress=progress_percentage)
|
||
|
||
if test_loss < best_loss:
|
||
best_loss = test_loss
|
||
epochs_no_improve = 0
|
||
checkpoint_data = {
|
||
'epoch': epoch + 1,
|
||
'model_state_dict': model.state_dict(),
|
||
'optimizer_state_dict': optimizer.state_dict(),
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y,
|
||
}
|
||
model_manager.save_model_artifact(checkpoint_data, "checkpoint_best.pth", model_version_path)
|
||
emit_progress(f"💾 保存最佳模型检查点 (epoch {epoch+1}, test_loss: {test_loss:.4f})")
|
||
else:
|
||
epochs_no_improve += 1
|
||
|
||
if epochs_no_improve >= patience:
|
||
emit_progress(f"连续 {patience} 个epoch测试损失未改善,提前停止训练。")
|
||
break
|
||
|
||
training_time = time.time() - start_time
|
||
|
||
# 6. 保存产物和评估
|
||
loss_fig = plt.figure(figsize=(10, 6))
|
||
plt.plot(train_losses, label='Training Loss')
|
||
plt.plot(test_losses, label='Test Loss')
|
||
plt.title(f'{model_type} 损失曲线 - {product_name} (v{version}) - {training_scope}')
|
||
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.legend(); plt.grid(True)
|
||
model_manager.save_model_artifact(loss_fig, "loss_curve.png", model_version_path)
|
||
plt.close(loss_fig)
|
||
emit_progress(f"损失曲线已保存到: {os.path.join(model_version_path, 'loss_curve.png')}")
|
||
|
||
model.eval()
|
||
with torch.no_grad():
|
||
testX_tensor = torch.Tensor(testX).to(DEVICE)
|
||
test_pred = model(testX_tensor).cpu().numpy()
|
||
if len(test_pred.shape) == 3: test_pred = test_pred.squeeze(-1)
|
||
|
||
test_pred_inv = scaler_y.inverse_transform(test_pred.reshape(-1, FORECAST_HORIZON))
|
||
test_true_inv = scaler_y.inverse_transform(testY.reshape(-1, FORECAST_HORIZON))
|
||
|
||
metrics = evaluate_model(test_true_inv.flatten(), test_pred_inv.flatten())
|
||
metrics['training_time'] = training_time
|
||
|
||
emit_progress(f"模型评估完成 - RMSE: {metrics['rmse']:.4f}, R²: {metrics['r2']:.4f}")
|
||
|
||
# 7. 保存最终模型和元数据
|
||
final_model_data = {
|
||
'model_state_dict': model.state_dict(),
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y,
|
||
}
|
||
model_manager.save_model_artifact(final_model_data, "model.pth", model_version_path)
|
||
|
||
metadata = {
|
||
'product_id': product_id, 'product_name': product_name, 'model_type': model_type,
|
||
'version': f'v{version}', 'training_mode': training_mode, 'scope': scope,
|
||
'aggregation_method': aggregation_method, 'training_scope_description': training_scope,
|
||
'timestamp': datetime.now().isoformat(), 'metrics': metrics,
|
||
'config': {
|
||
'input_dim': input_dim, 'output_dim': output_dim,
|
||
'hidden_sizes': [hidden_size, hidden_size*2, hidden_size],
|
||
'sequence_length': LOOK_BACK, 'forecast_horizon': FORECAST_HORIZON,
|
||
'use_optimized': use_optimized
|
||
}
|
||
}
|
||
model_manager.save_model_artifact(metadata, "metadata.json", model_version_path)
|
||
|
||
# 8. 更新版本文件
|
||
model_manager.update_version(model_identifier, version)
|
||
|
||
emit_progress(f"✅ {model_type}模型 v{version} 训练完成!", progress=100, metrics=metrics)
|
||
|
||
return model, metrics, version, model_version_path |