ShopTRAINING/server/trainers/mlstm_trainer.py
xz2000 a9a0e51769 # 修改记录日志 (日期: 2025-07-16)
## 1. 核心 Bug 修复

### 文件: `server/core/predictor.py`

- **问题**: 在 `train_model` 方法中调用内部辅助函数 `_prepare_training_params` 时,没有正确传递 `product_ids` 和 `store_ids` 参数,导致在 `_prepare_training_params` 内部发生 `NameError`。
- **修复**:
    - 修正了 `train_model` 方法内部对 `_prepare_training_params` 的调用,确保 `product_ids` 和 `store_ids` 被显式传递。
    - 此前已修复 `train_model` 的函数签名,使其能正确接收 `store_ids`。
- **结果**: 彻底解决了训练流程中的参数传递问题,根除了由此引发的 `NameError`。

## 2. 代码清理与重构

### 文件: `server/api.py`

- **内容**: 移除了在 `start_training` API 端点中遗留的旧版、基于线程(`threading.Thread`)的训练逻辑。
- **原因**: 该代码块已被新的、基于多进程(`multiprocessing`)的 `TrainingProcessManager` 完全取代。旧代码中包含了大量用于调试的 `thread_safe_print` 日志,已无用处。
- **结果**: `start_training` 端点的逻辑变得更加清晰,只负责参数校验和向 `TrainingProcessManager` 提交任务。

### 文件: `server/utils/training_process_manager.py`

- **内容**: 在 `TrainingWorker` 的 `run_training_task` 方法中,移除了一个用于模拟训练进度的 `for` 循环。
- **原因**: 该循环包含 `time.sleep(1)`,仅用于在没有实际训练逻辑时模拟进度更新,现在实际的训练器会通过回调函数报告真实进度,因此该模拟代码不再需要。
- **结果**: `TrainingWorker` 现在直接调用实际的训练器,不再有模拟延迟,代码更贴近生产环境。

## 3. 启动依赖

- **Python**: 3.x
- **主要库**:
    - Flask
    - Flask-SocketIO
    - Flasgger
    - pandas
    - numpy
    - torch
    - scikit-learn
    - matplotlib
- **启动命令**: `python server/api.py`
2025-07-16 15:34:57 +08:00

341 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
药店销售预测系统 - mLSTM模型训练函数
"""
import os
import time
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from datetime import datetime
from models.mlstm_model import MLSTMTransformer as MatrixLSTM
from utils.data_utils import create_dataset, PharmacyDataset
from analysis.metrics import evaluate_model
from core.config import (
DEVICE, LOOK_BACK, FORECAST_HORIZON
)
from utils.training_progress import progress_manager
from utils.model_manager import model_manager
from typing import Any
def convert_numpy_types(obj: Any) -> Any:
"""
递归地将字典或列表中的Numpy数值类型转换为Python原生类型。
"""
if isinstance(obj, dict):
return {k: convert_numpy_types(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_numpy_types(elem) for elem in obj]
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
return obj
def train_product_model_with_mlstm(
product_id,
product_df,
store_id=None,
training_mode='product',
aggregation_method='sum',
scope=None,
epochs=50,
socketio=None,
task_id=None,
continue_training=False,
progress_callback=None,
patience=10,
learning_rate=0.001,
clip_norm=1.0
):
"""
使用mLSTM训练产品销售预测模型
参数:
product_id: 产品ID
store_id: 店铺ID为None时使用全局数据
training_mode: 训练模式 ('product', 'store', 'global')
aggregation_method: 聚合方法 ('sum', 'mean', 'weighted')
epochs: 训练轮次
model_dir: 模型保存目录
version: 模型版本如果为None则自动生成
socketio: Socket.IO实例用于实时进度推送
task_id: 任务ID
continue_training: 是否继续训练
progress_callback: 进度回调函数,用于多进程训练
"""
# 创建WebSocket进度反馈函数支持多进程
def emit_progress(message, progress=None, metrics=None):
"""发送训练进度到前端"""
progress_data = {
'task_id': task_id,
'message': message,
'timestamp': time.time()
}
if progress is not None:
progress_data['progress'] = progress
if metrics is not None:
progress_data['metrics'] = metrics
if progress_callback:
try:
progress_callback(progress_data)
except Exception as e:
print(f"[mLSTM] 进度回调失败: {e}")
if socketio and task_id:
try:
socketio.emit('training_progress', progress_data, namespace='/training')
except Exception as e:
print(f"[mLSTM] WebSocket发送失败: {e}")
print(f"[mLSTM] {message}", flush=True)
import sys
sys.stdout.flush()
sys.stderr.flush()
emit_progress("开始mLSTM模型训练...")
# 1. 确定模型标识符和版本
model_type = 'mlstm'
# 直接使用从 predictor 传递过来的、已经构建好的 scope
if scope is None:
# 作为后备如果scope未提供则根据旧逻辑构建不推荐
if training_mode == 'store':
current_product_id = product_id if product_id and product_id not in ['unknown', 'all'] else 'all'
scope = f"{store_id}_{current_product_id}"
elif training_mode == 'product':
scope = f"{product_id}_{store_id or 'all'}"
elif training_mode == 'global':
scope = product_id if product_id else "all"
emit_progress(f"警告: Scope未由调用方提供已自动构建为 '{scope}'", 'warning')
model_identifier = model_manager.get_model_identifier(model_type, training_mode, scope, aggregation_method)
version = model_manager.get_next_version_number(model_identifier)
emit_progress(f"开始训练 mLSTM 模型 v{version}")
# 2. 获取模型版本路径
model_version_path = model_manager.get_model_version_path(
model_type=model_type,
training_mode=training_mode,
version=version,
aggregation_method=aggregation_method,
product_id=product_id,
store_id=store_id
)
emit_progress(f"模型将保存到: {model_version_path}")
if training_mode == 'store' and store_id:
training_scope = f"店铺 {store_id}"
elif training_mode == 'global':
training_scope = f"全局聚合({aggregation_method})"
else: # 主要对应 product 模式
if store_id:
training_scope = f"店铺 {store_id}"
else:
training_scope = "所有店铺"
min_required_samples = LOOK_BACK + FORECAST_HORIZON
if len(product_df) < min_required_samples:
error_msg = f"数据不足: 需要 {min_required_samples} 天, 实际 {len(product_df)} 天。"
print(error_msg)
emit_progress(f"训练失败:{error_msg}")
raise ValueError(error_msg)
product_name = product_df['product_name'].iloc[0]
print(f"[mLSTM] 使用mLSTM模型训练 '{product_name}' (ID: {product_id}) 的销售预测模型", flush=True)
print(f"[mLSTM] 训练范围: {training_scope}", flush=True)
print(f"[mLSTM] 版本: v{version}", flush=True)
print(f"[mLSTM] 使用设备: {DEVICE}", flush=True)
print(f"[mLSTM] 数据量: {len(product_df)} 条记录", flush=True)
emit_progress(f"训练产品: {product_name} (ID: {product_id}) - {training_scope}")
# 创建特征和目标变量
features = ['sales', 'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature']
print(f"[mLSTM] 开始数据预处理,特征: {features}", flush=True)
# 预处理数据
X = product_df[features].values
y = product_df[['sales']].values
print(f"[mLSTM] 特征矩阵形状: {X.shape}, 目标矩阵形状: {y.shape}", flush=True)
emit_progress("数据预处理中...")
scaler_X = MinMaxScaler(feature_range=(0, 1))
scaler_y = MinMaxScaler(feature_range=(0, 1))
X_scaled = scaler_X.fit_transform(X)
y_scaled = scaler_y.fit_transform(y)
print(f"[mLSTM] 数据归一化完成", flush=True)
train_size = int(len(X_scaled) * 0.8)
X_train, X_test = X_scaled[:train_size], X_scaled[train_size:]
y_train, y_test = y_scaled[:train_size], y_scaled[train_size:]
trainX, trainY = create_dataset(X_train, y_train, LOOK_BACK, FORECAST_HORIZON)
testX, testY = create_dataset(X_test, y_test, LOOK_BACK, FORECAST_HORIZON)
train_loader = DataLoader(PharmacyDataset(torch.Tensor(trainX), torch.Tensor(trainY)), batch_size=32, shuffle=True)
test_loader = DataLoader(PharmacyDataset(torch.Tensor(testX), torch.Tensor(testY)), batch_size=32, shuffle=False)
total_batches = len(train_loader)
total_samples = len(train_loader.dataset)
print(f"[mLSTM] 数据加载器创建完成 - 批次数: {total_batches}, 样本数: {total_samples}", flush=True)
emit_progress(f"数据加载器准备完成 - 批次数: {total_batches}, 样本数: {total_samples}")
input_dim = X_train.shape[1]
output_dim = FORECAST_HORIZON
hidden_size, num_heads, dropout_rate, num_blocks, embed_dim, dense_dim = 128, 4, 0.1, 3, 32, 32
model = MatrixLSTM(
num_features=input_dim, hidden_size=hidden_size, mlstm_layers=2, embed_dim=embed_dim,
dense_dim=dense_dim, num_heads=num_heads, dropout_rate=dropout_rate,
num_blocks=num_blocks, output_sequence_length=output_dim
).to(DEVICE)
print(f"[mLSTM] 模型创建完成", flush=True)
emit_progress("mLSTM模型初始化完成")
if continue_training:
emit_progress("继续训练模式启动,但当前重构版本将从头开始。")
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=patience // 2, factor=0.5)
emit_progress("数据预处理完成,开始模型训练...", progress=10)
train_losses, test_losses = [], []
start_time = time.time()
checkpoint_interval = max(1, epochs // 10)
best_loss = float('inf')
epochs_no_improve = 0
emit_progress(f"开始训练 - 总epoch: {epochs}, 检查点间隔: {checkpoint_interval}, 耐心值: {patience}")
for epoch in range(epochs):
emit_progress(f"开始训练 Epoch {epoch+1}/{epochs}")
model.train()
epoch_loss = 0
for X_batch, y_batch in train_loader:
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
optimizer.zero_grad()
outputs = model(X_batch)
loss = criterion(outputs, y_batch)
loss.backward()
if clip_norm:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=clip_norm)
optimizer.step()
epoch_loss += loss.item()
# 计算训练损失
train_loss = epoch_loss / len(train_loader)
train_losses.append(train_loss)
# 在测试集上评估
model.eval()
test_loss = 0
with torch.no_grad():
for X_batch, y_batch in test_loader:
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
outputs = model(X_batch)
loss = criterion(outputs, y_batch)
test_loss += loss.item()
test_loss /= len(test_loader)
test_losses.append(test_loss)
# 更新学习率
scheduler.step(test_loss)
emit_progress(f"Epoch {epoch+1}/{epochs} 完成 - Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}",
progress=10 + ((epoch + 1) / epochs) * 85)
# 定期保存检查点
# 3. 保存检查点
checkpoint_data = {
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scaler_X': scaler_X,
'scaler_y': scaler_y,
}
if (epoch + 1) % checkpoint_interval == 0:
model_manager.save_model_artifact(checkpoint_data, f"checkpoint_epoch_{epoch+1}.pth", model_version_path)
emit_progress(f"💾 保存训练检查点 epoch_{epoch+1}")
if test_loss < best_loss:
best_loss = test_loss
model_manager.save_model_artifact(checkpoint_data, "checkpoint_best.pth", model_version_path)
emit_progress(f"💾 保存最佳模型检查点 (epoch {epoch+1}, test_loss: {test_loss:.4f})")
epochs_no_improve = 0
else:
epochs_no_improve += 1
if epochs_no_improve >= patience:
emit_progress(f"连续 {patience} 个epoch测试损失未改善提前停止训练。")
break
training_time = time.time() - start_time
loss_fig = plt.figure(figsize=(10, 6))
plt.plot(train_losses, label='Training Loss')
plt.plot(test_losses, label='Test Loss')
plt.title(f'mLSTM 损失曲线 - {product_name} (v{version}) - {training_scope}')
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.legend(); plt.grid(True)
model_manager.save_model_artifact(loss_fig, "loss_curve.png", model_version_path)
plt.close(loss_fig)
print(f"损失曲线已保存到: {os.path.join(model_version_path, 'loss_curve.png')}")
model.eval()
with torch.no_grad():
test_pred = model(torch.Tensor(testX).to(DEVICE)).cpu().numpy()
metrics = evaluate_model(scaler_y.inverse_transform(testY), scaler_y.inverse_transform(test_pred))
metrics['training_time'] = training_time
# 解决 'Object of type float32 is not JSON serializable' 错误
metrics = convert_numpy_types(metrics)
# 打印评估指标
print("\n模型评估指标:")
print(f"MSE: {metrics['mse']:.4f}")
print(f"RMSE: {metrics['rmse']:.4f}")
print(f"MAE: {metrics['mae']:.4f}")
print(f"R²: {metrics['r2']:.4f}")
print(f"MAPE: {metrics['mape']:.2f}%")
print(f"训练时间: {training_time:.2f}")
final_model_data = {
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'scaler_X': scaler_X,
'scaler_y': scaler_y,
}
model_manager.save_model_artifact(final_model_data, "model.pth", model_version_path)
metadata = {
'product_id': product_id, 'product_name': product_name, 'model_type': model_type,
'version': f'v{version}', 'training_mode': training_mode, 'scope': scope,
'aggregation_method': aggregation_method, 'training_scope_description': training_scope,
'product_scope': '所有药品' if product_id == 'all' else product_name,
'timestamp': datetime.now().isoformat(), 'metrics': metrics,
'config': {
'input_dim': input_dim, 'output_dim': output_dim, 'hidden_size': hidden_size,
'num_heads': num_heads, 'dropout': dropout_rate, 'num_blocks': num_blocks,
'embed_dim': embed_dim, 'dense_dim': dense_dim,
'sequence_length': LOOK_BACK, 'forecast_horizon': FORECAST_HORIZON,
}
}
model_manager.save_model_artifact(metadata, "metadata.json", model_version_path)
# 6. 更新版本文件
model_manager.update_version(model_identifier, version)
emit_progress(f"✅ mLSTM模型 v{version} 训练完成!", progress=100, metrics=metrics)
return model, metrics, version, model_version_path