xz2000 a9a0e51769 # 修改记录日志 (日期: 2025-07-16)
## 1. 核心 Bug 修复

### 文件: `server/core/predictor.py`

- **问题**: 在 `train_model` 方法中调用内部辅助函数 `_prepare_training_params` 时,没有正确传递 `product_ids` 和 `store_ids` 参数,导致在 `_prepare_training_params` 内部发生 `NameError`。
- **修复**:
    - 修正了 `train_model` 方法内部对 `_prepare_training_params` 的调用,确保 `product_ids` 和 `store_ids` 被显式传递。
    - 此前已修复 `train_model` 的函数签名,使其能正确接收 `store_ids`。
- **结果**: 彻底解决了训练流程中的参数传递问题,根除了由此引发的 `NameError`。

## 2. 代码清理与重构

### 文件: `server/api.py`

- **内容**: 移除了在 `start_training` API 端点中遗留的旧版、基于线程(`threading.Thread`)的训练逻辑。
- **原因**: 该代码块已被新的、基于多进程(`multiprocessing`)的 `TrainingProcessManager` 完全取代。旧代码中包含了大量用于调试的 `thread_safe_print` 日志,已无用处。
- **结果**: `start_training` 端点的逻辑变得更加清晰,只负责参数校验和向 `TrainingProcessManager` 提交任务。

### 文件: `server/utils/training_process_manager.py`

- **内容**: 在 `TrainingWorker` 的 `run_training_task` 方法中,移除了一个用于模拟训练进度的 `for` 循环。
- **原因**: 该循环包含 `time.sleep(1)`,仅用于在没有实际训练逻辑时模拟进度更新,现在实际的训练器会通过回调函数报告真实进度,因此该模拟代码不再需要。
- **结果**: `TrainingWorker` 现在直接调用实际的训练器,不再有模拟延迟,代码更贴近生产环境。

## 3. 启动依赖

- **Python**: 3.x
- **主要库**:
    - Flask
    - Flask-SocketIO
    - Flasgger
    - pandas
    - numpy
    - torch
    - scikit-learn
    - matplotlib
- **启动命令**: `python server/api.py`
2025-07-16 15:34:57 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00

药店销售预测系统

这是一个基于多种深度学习模型的药店销售预测系统,支持多种时序预测模型,包括 Transformer、mLSTM、KAN 和 TCN。

功能特点

  • 支持多种深度学习模型进行销量预测
  • 提供命令行界面和API服务两种使用方式
  • 支持模型训练、预测和评估
  • 提供预测结果可视化和分析
  • 支持模型比较和管理

项目结构

├── core/                   # 核心模块
│   ├── __init__.py
│   ├── config.py           # 全局配置参数
│   └── predictor.py        # 核心预测器类
├── trainers/               # 模型训练器
│   ├── __init__.py
│   ├── mlstm_trainer.py    # mLSTM模型训练函数
│   ├── kan_trainer.py      # KAN模型训练函数
│   ├── tcn_trainer.py      # TCN模型训练函数
│   └── transformer_trainer.py  # Transformer模型训练函数
├── predictors/             # 预测模块
│   ├── __init__.py
│   └── model_predictor.py  # 模型预测函数
├── analysis/               # 分析模块
│   ├── __init__.py
│   ├── metrics.py          # 评估指标计算函数
│   ├── trend_analysis.py   # 趋势分析函数
│   └── explanation.py      # 预测解释函数
├── utils/                  # 工具模块
│   ├── __init__.py
│   ├── data_utils.py       # 数据处理工具函数
│   └── visualization.py    # 可视化工具函数
├── models/                 # 模型定义
│   ├── transformer_model.py
│   ├── mlstm_model.py
│   ├── kan_model.py
│   ├── tcn_model.py
│   └── optimized_kan_forecaster.py
├── pharmacy_predictor.py   # 主接口文件
├── run_pharmacy_prediction.py  # 命令行运行入口
├── api.py                  # API服务入口
└── pharmacy_sales.xlsx     # 示例数据文件

支持的模型

  1. Transformer: 基于自注意力机制的时序预测模型
  2. mLSTM: 矩阵LSTM模型结合了LSTM和Transformer的优点
  3. KAN: Kolmogorov-Arnold Network一种基于柯尔莫哥洛夫-阿诺德定理的神经网络
  4. TCN: 时间卷积网络,使用因果卷积进行时序建模
  5. 优化版KAN: 经过优化的KAN模型提高了预测精度和训练效率

使用方法

命令行界面

运行命令行界面:

python run_pharmacy_prediction.py

API服务

启动API服务

python api.py

代码中使用

from pharmacy_predictor import PharmacyPredictor

# 创建预测器实例
predictor = PharmacyPredictor(data_path='pharmacy_sales.xlsx')

# 训练模型
metrics = predictor.train_model(product_id='P001', model_type='tcn', epochs=50)

# 使用模型预测
result = predictor.predict(product_id='P001', model_type='tcn', future_days=7, analyze_result=True)

依赖库

  • PyTorch
  • pandas
  • numpy
  • matplotlib
  • scikit-learn
  • Flask (用于API服务)
  • pytorch-tcn (用于TCN模型)
Description
No description provided
Readme 44 MiB
Languages
Python 73.3%
Vue 22%
HTML 1.8%
CSS 1.1%
Batchfile 0.8%
Other 1%