xz2000 87df49f764 添加训练算法模拟xgboosT,训练可以完成,预测读取还有问题
数据文件保存机构改为### 1.2. 文件存储位置

-   **最终产物**: 所有最终模型、元数据文件、损失图等,统一存放在 `saved_models/` 根目录下。
-   **过程文件**: 所有训练过程中的检查点文件,统一存放在 `saved_models/checkpoints/` 目录下。

### 1.3. 文件名生成规则

1.  **构建逻辑路径**: 根据训练参数(模式、范围、类型、版本)确定逻辑路径。
    -   *示例*: `product/P001_all/mlstm/v2`

2.  **生成文件名前缀**: 将逻辑路径中的所有 `/` 替换为 `_`。
    -   *示例*: `product_P001_all_mlstm_v2`

3.  **拼接文件后缀**: 在前缀后加上描述文件类型的后缀。
    -   `_model.pth`
    -   `_loss_curve.png`
    -   `_checkpoint_best.pth`
    -   `_checkpoint_epoch_{N}.pth`

#### **完整示例:**

-   **最终模型**: `saved_models/product_P001_all_mlstm_v2_model.pth`
-   **最佳检查点**: `saved_models/checkpoints/product_P001_all_mlstm_v2_checkpoint_best.pth`
-   **Epoch 50 检查点**: `saved_models/checkpoints/product_P001_all_mlstm_v2_checkpoint_epoch_50.pth`
2025-07-21 18:47:27 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00

药店销售预测系统

这是一个基于多种深度学习模型的药店销售预测系统,支持多种时序预测模型,包括 Transformer、mLSTM、KAN 和 TCN。

功能特点

  • 支持多种深度学习模型进行销量预测
  • 提供命令行界面和API服务两种使用方式
  • 支持模型训练、预测和评估
  • 提供预测结果可视化和分析
  • 支持模型比较和管理

项目结构

├── core/                   # 核心模块
│   ├── __init__.py
│   ├── config.py           # 全局配置参数
│   └── predictor.py        # 核心预测器类
├── trainers/               # 模型训练器
│   ├── __init__.py
│   ├── mlstm_trainer.py    # mLSTM模型训练函数
│   ├── kan_trainer.py      # KAN模型训练函数
│   ├── tcn_trainer.py      # TCN模型训练函数
│   └── transformer_trainer.py  # Transformer模型训练函数
├── predictors/             # 预测模块
│   ├── __init__.py
│   └── model_predictor.py  # 模型预测函数
├── analysis/               # 分析模块
│   ├── __init__.py
│   ├── metrics.py          # 评估指标计算函数
│   ├── trend_analysis.py   # 趋势分析函数
│   └── explanation.py      # 预测解释函数
├── utils/                  # 工具模块
│   ├── __init__.py
│   ├── data_utils.py       # 数据处理工具函数
│   └── visualization.py    # 可视化工具函数
├── models/                 # 模型定义
│   ├── transformer_model.py
│   ├── mlstm_model.py
│   ├── kan_model.py
│   ├── tcn_model.py
│   └── optimized_kan_forecaster.py
├── pharmacy_predictor.py   # 主接口文件
├── run_pharmacy_prediction.py  # 命令行运行入口
├── api.py                  # API服务入口
└── pharmacy_sales.xlsx     # 示例数据文件

支持的模型

  1. Transformer: 基于自注意力机制的时序预测模型
  2. mLSTM: 矩阵LSTM模型结合了LSTM和Transformer的优点
  3. KAN: Kolmogorov-Arnold Network一种基于柯尔莫哥洛夫-阿诺德定理的神经网络
  4. TCN: 时间卷积网络,使用因果卷积进行时序建模
  5. 优化版KAN: 经过优化的KAN模型提高了预测精度和训练效率

使用方法

命令行界面

运行命令行界面:

python run_pharmacy_prediction.py

API服务

启动API服务

python api.py

代码中使用

from pharmacy_predictor import PharmacyPredictor

# 创建预测器实例
predictor = PharmacyPredictor(data_path='pharmacy_sales.xlsx')

# 训练模型
metrics = predictor.train_model(product_id='P001', model_type='tcn', epochs=50)

# 使用模型预测
result = predictor.predict(product_id='P001', model_type='tcn', future_days=7, analyze_result=True)

依赖库

  • PyTorch
  • pandas
  • numpy
  • matplotlib
  • scikit-learn
  • Flask (用于API服务)
  • pytorch-tcn (用于TCN模型)
Description
No description provided
Readme 44 MiB
Languages
Python 73.3%
Vue 22%
HTML 1.8%
CSS 1.1%
Batchfile 0.8%
Other 1%