xz2000 7a4bfedcaa ---
**日期**: 2025-07-15 11:43
**主题**: 修复因PyTorch版本不兼容导致的训练失败问题

### 问题描述
在修复了路径和依赖问题后,在某些机器上运行模型训练时,程序因 `TypeError: ReduceLROnPlateau.__init__() got an unexpected keyword argument 'verbose'` 而崩溃。但在本地开发机上运行正常。

### 根本原因
此问题是典型的**环境不一致**导致的兼容性错误。
1.  **PyTorch版本差异**: 本地开发环境安装了较旧版本的PyTorch,其学习率调度器 `ReduceLROnPlateau` 支持 `verbose` 参数(用于在学习率变化时打印日志)。
2.  **新环境**: 在其他计算机或新创建的虚拟环境中,安装了较新版本的PyTorch。在新版本中,`ReduceLROnPlateau` 的 `verbose` 参数已被移除。
3.  **代码问题**: `server/trainers/mlstm_trainer.py` 和 `server/trainers/transformer_trainer.py` 的代码中,在创建 `ReduceLROnPlateau` 实例时硬编码了 `verbose=True` 参数,导致在新版PyTorch环境下调用时出现 `TypeError`。

### 解决方案:移除已弃用的参数
1.  **全面排查**: 检查了项目中所有训练器文件 (`mlstm_trainer.py`, `transformer_trainer.py`, `kan_trainer.py`, `tcn_trainer.py`)。
2.  **精确定位**: 确认只有 `mlstm_trainer.py` 和 `transformer_trainer.py` 使用了 `ReduceLROnPlateau` 并传递了 `verbose` 参数。
3.  **执行修复**:
    *   **文件**: `server/trainers/mlstm_trainer.py` 和 `server/trainers/transformer_trainer.py`
    *   **位置**: `ReduceLROnPlateau` 的初始化调用处。
    *   **操作**: 删除了 `verbose=True` 参数。
        ```diff
        - scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', ..., verbose=True)
        + scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', ...)
        ```
    *   **原因**: 移除这个在新版PyTorch中已不存在的参数,可以从根本上解决 `TypeError`,并确保代码在不同版本的PyTorch环境中都能正常运行。此修改不影响学习率调度器的核心功能。
2025-07-15 11:56:21 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
---
2025-07-15 11:56:21 +08:00
2025-07-02 11:05:23 +08:00
2025-07-15 10:37:33 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
2025-07-02 11:05:23 +08:00
---
2025-07-15 11:56:21 +08:00

药店销售预测系统

这是一个基于多种深度学习模型的药店销售预测系统,支持多种时序预测模型,包括 Transformer、mLSTM、KAN 和 TCN。

功能特点

  • 支持多种深度学习模型进行销量预测
  • 提供命令行界面和API服务两种使用方式
  • 支持模型训练、预测和评估
  • 提供预测结果可视化和分析
  • 支持模型比较和管理

项目结构

├── core/                   # 核心模块
│   ├── __init__.py
│   ├── config.py           # 全局配置参数
│   └── predictor.py        # 核心预测器类
├── trainers/               # 模型训练器
│   ├── __init__.py
│   ├── mlstm_trainer.py    # mLSTM模型训练函数
│   ├── kan_trainer.py      # KAN模型训练函数
│   ├── tcn_trainer.py      # TCN模型训练函数
│   └── transformer_trainer.py  # Transformer模型训练函数
├── predictors/             # 预测模块
│   ├── __init__.py
│   └── model_predictor.py  # 模型预测函数
├── analysis/               # 分析模块
│   ├── __init__.py
│   ├── metrics.py          # 评估指标计算函数
│   ├── trend_analysis.py   # 趋势分析函数
│   └── explanation.py      # 预测解释函数
├── utils/                  # 工具模块
│   ├── __init__.py
│   ├── data_utils.py       # 数据处理工具函数
│   └── visualization.py    # 可视化工具函数
├── models/                 # 模型定义
│   ├── transformer_model.py
│   ├── mlstm_model.py
│   ├── kan_model.py
│   ├── tcn_model.py
│   └── optimized_kan_forecaster.py
├── pharmacy_predictor.py   # 主接口文件
├── run_pharmacy_prediction.py  # 命令行运行入口
├── api.py                  # API服务入口
└── pharmacy_sales.xlsx     # 示例数据文件

支持的模型

  1. Transformer: 基于自注意力机制的时序预测模型
  2. mLSTM: 矩阵LSTM模型结合了LSTM和Transformer的优点
  3. KAN: Kolmogorov-Arnold Network一种基于柯尔莫哥洛夫-阿诺德定理的神经网络
  4. TCN: 时间卷积网络,使用因果卷积进行时序建模
  5. 优化版KAN: 经过优化的KAN模型提高了预测精度和训练效率

使用方法

命令行界面

运行命令行界面:

python run_pharmacy_prediction.py

API服务

启动API服务

python api.py

代码中使用

from pharmacy_predictor import PharmacyPredictor

# 创建预测器实例
predictor = PharmacyPredictor(data_path='pharmacy_sales.xlsx')

# 训练模型
metrics = predictor.train_model(product_id='P001', model_type='tcn', epochs=50)

# 使用模型预测
result = predictor.predict(product_id='P001', model_type='tcn', future_days=7, analyze_result=True)

依赖库

  • PyTorch
  • pandas
  • numpy
  • matplotlib
  • scikit-learn
  • Flask (用于API服务)
  • pytorch-tcn (用于TCN模型)
Description
No description provided
Readme 44 MiB
Languages
Python 73.3%
Vue 22%
HTML 1.8%
CSS 1.1%
Batchfile 0.8%
Other 1%