413 lines
15 KiB
Python
413 lines
15 KiB
Python
"""
|
||
药店销售预测系统 - Transformer模型训练函数
|
||
"""
|
||
|
||
import os
|
||
import time
|
||
import pandas as pd
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
from torch.utils.data import DataLoader
|
||
from sklearn.preprocessing import MinMaxScaler
|
||
import matplotlib.pyplot as plt
|
||
from tqdm import tqdm
|
||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||
|
||
from models.transformer_model import TimeSeriesTransformer
|
||
from utils.data_utils import create_dataset, PharmacyDataset
|
||
from utils.multi_store_data_utils import get_store_product_sales_data, aggregate_multi_store_data
|
||
from utils.visualization import plot_loss_curve
|
||
from analysis.metrics import evaluate_model
|
||
from core.config import (
|
||
DEVICE, DEFAULT_MODEL_DIR, LOOK_BACK, FORECAST_HORIZON
|
||
)
|
||
from utils.training_progress import progress_manager
|
||
from utils.model_manager import model_manager
|
||
|
||
def train_product_model_with_transformer(
|
||
product_id,
|
||
model_identifier,
|
||
product_df=None,
|
||
store_id=None,
|
||
training_mode='product',
|
||
aggregation_method='sum',
|
||
epochs=50,
|
||
sequence_length=LOOK_BACK,
|
||
forecast_horizon=FORECAST_HORIZON,
|
||
model_dir=DEFAULT_MODEL_DIR,
|
||
version=None,
|
||
socketio=None,
|
||
task_id=None,
|
||
continue_training=False,
|
||
patience=10,
|
||
learning_rate=0.001,
|
||
clip_norm=1.0
|
||
):
|
||
"""
|
||
使用Transformer模型训练产品销售预测模型
|
||
"""
|
||
|
||
def emit_progress(message, progress=None, metrics=None):
|
||
"""发送训练进度到前端"""
|
||
if socketio and task_id:
|
||
data = {
|
||
'task_id': task_id,
|
||
'message': message,
|
||
'timestamp': time.time()
|
||
}
|
||
if progress is not None:
|
||
data['progress'] = progress
|
||
if metrics is not None:
|
||
data['metrics'] = metrics
|
||
socketio.emit('training_progress', data, namespace='/training')
|
||
print(f"[{time.strftime('%H:%M:%S')}] {message}", flush=True)
|
||
import sys
|
||
sys.stdout.flush()
|
||
sys.stderr.flush()
|
||
|
||
emit_progress("开始Transformer模型训练...")
|
||
|
||
try:
|
||
from utils.training_progress import progress_manager
|
||
except ImportError:
|
||
class DummyProgressManager:
|
||
def set_stage(self, *args, **kwargs): pass
|
||
def start_training(self, *args, **kwargs): pass
|
||
def start_epoch(self, *args, **kwargs): pass
|
||
def update_batch(self, *args, **kwargs): pass
|
||
def finish_epoch(self, *args, **kwargs): pass
|
||
def finish_training(self, *args, **kwargs): pass
|
||
progress_manager = DummyProgressManager()
|
||
|
||
if product_df is None:
|
||
from utils.multi_store_data_utils import aggregate_multi_store_data
|
||
product_df = aggregate_multi_store_data(
|
||
product_id=product_id,
|
||
aggregation_method=aggregation_method
|
||
)
|
||
training_scope = f"全局聚合({aggregation_method})"
|
||
else:
|
||
training_scope = "所有店铺"
|
||
|
||
if product_df.empty:
|
||
raise ValueError(f"产品 {product_id} 没有可用的销售数据")
|
||
|
||
min_required_samples = sequence_length + forecast_horizon
|
||
if len(product_df) < min_required_samples:
|
||
error_msg = (
|
||
f"❌ 训练数据不足错误\n"
|
||
f"当前配置需要: {min_required_samples} 天数据 (LOOK_BACK={sequence_length} + FORECAST_HORIZON={forecast_horizon})\n"
|
||
f"实际数据量: {len(product_df)} 天\n"
|
||
f"产品ID: {product_id}, 训练模式: {training_mode}\n"
|
||
)
|
||
print(error_msg)
|
||
raise ValueError(error_msg)
|
||
|
||
product_df = product_df.sort_values('date')
|
||
product_name = product_df['product_name'].iloc[0]
|
||
|
||
print(f"[Transformer] 训练产品 '{product_name}' (ID: {product_id}) 的销售预测模型", flush=True)
|
||
print(f"[Device] 使用设备: {DEVICE}", flush=True)
|
||
print(f"[Model] 模型将保存到目录: {model_dir}", flush=True)
|
||
|
||
features = ['sales', 'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature']
|
||
|
||
progress_manager.set_stage("data_preprocessing", 0)
|
||
emit_progress("数据预处理中...")
|
||
|
||
X = product_df[features].values
|
||
y = product_df[['sales']].values
|
||
|
||
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
||
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
||
|
||
X_scaled = scaler_X.fit_transform(X)
|
||
y_scaled = scaler_y.fit_transform(y)
|
||
|
||
progress_manager.set_stage("data_preprocessing", 40)
|
||
|
||
train_size = int(len(X_scaled) * 0.8)
|
||
X_train, X_test = X_scaled[:train_size], X_scaled[train_size:]
|
||
y_train, y_test = y_scaled[:train_size], y_scaled[train_size:]
|
||
|
||
trainX, trainY = create_dataset(X_train, y_train, sequence_length, forecast_horizon)
|
||
testX, testY = create_dataset(X_test, y_test, sequence_length, forecast_horizon)
|
||
|
||
progress_manager.set_stage("data_preprocessing", 70)
|
||
|
||
trainX_tensor = torch.Tensor(trainX)
|
||
trainY_tensor = torch.Tensor(trainY)
|
||
testX_tensor = torch.Tensor(testX)
|
||
testY_tensor = torch.Tensor(testY)
|
||
|
||
train_dataset = PharmacyDataset(trainX_tensor, trainY_tensor)
|
||
test_dataset = PharmacyDataset(testX_tensor, testY_tensor)
|
||
|
||
batch_size = 32
|
||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||
|
||
total_batches = len(train_loader)
|
||
total_samples = len(train_dataset)
|
||
progress_manager.total_batches_per_epoch = total_batches
|
||
progress_manager.batch_size = batch_size
|
||
progress_manager.total_samples = total_samples
|
||
|
||
progress_manager.set_stage("data_preprocessing", 100)
|
||
emit_progress("数据预处理完成,开始模型训练...")
|
||
|
||
input_dim = X_train.shape[1]
|
||
output_dim = forecast_horizon
|
||
hidden_size = 64
|
||
num_heads = 4
|
||
dropout_rate = 0.1
|
||
num_layers = 3
|
||
|
||
model = TimeSeriesTransformer(
|
||
num_features=input_dim,
|
||
d_model=hidden_size,
|
||
nhead=num_heads,
|
||
num_encoder_layers=num_layers,
|
||
dim_feedforward=hidden_size * 2,
|
||
dropout=dropout_rate,
|
||
output_sequence_length=output_dim,
|
||
seq_length=sequence_length,
|
||
batch_size=batch_size
|
||
)
|
||
|
||
model = model.to(DEVICE)
|
||
|
||
criterion = nn.MSELoss()
|
||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=patience // 2, factor=0.5)
|
||
|
||
train_losses = []
|
||
test_losses = []
|
||
start_time = time.time()
|
||
|
||
checkpoint_interval = max(1, epochs // 10)
|
||
best_loss = float('inf')
|
||
epochs_no_improve = 0
|
||
|
||
progress_manager.set_stage("model_training", 0)
|
||
emit_progress(f"开始训练 - 总epoch: {epochs}, 检查点间隔: {checkpoint_interval}, 耐心值: {patience}")
|
||
|
||
for epoch in range(epochs):
|
||
progress_manager.start_epoch(epoch)
|
||
|
||
model.train()
|
||
epoch_loss = 0
|
||
|
||
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
||
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
||
|
||
outputs = model(X_batch)
|
||
loss = criterion(outputs, y_batch)
|
||
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
if clip_norm:
|
||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=clip_norm)
|
||
optimizer.step()
|
||
|
||
epoch_loss += loss.item()
|
||
|
||
if batch_idx % 5 == 0 or batch_idx == len(train_loader) - 1:
|
||
current_lr = optimizer.param_groups[0]['lr']
|
||
progress_manager.update_batch(batch_idx, loss.item(), current_lr)
|
||
|
||
train_loss = epoch_loss / len(train_loader)
|
||
train_losses.append(train_loss)
|
||
|
||
progress_manager.set_stage("validation", 0)
|
||
|
||
model.eval()
|
||
test_loss = 0
|
||
with torch.no_grad():
|
||
for batch_idx, (X_batch, y_batch) in enumerate(test_loader):
|
||
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
||
|
||
outputs = model(X_batch)
|
||
loss = criterion(outputs, y_batch)
|
||
test_loss += loss.item()
|
||
|
||
if batch_idx % 3 == 0 or batch_idx == len(test_loader) - 1:
|
||
val_progress = (batch_idx / len(test_loader)) * 100
|
||
progress_manager.set_stage("validation", val_progress)
|
||
|
||
test_loss = test_loss / len(test_loader)
|
||
test_losses.append(test_loss)
|
||
|
||
scheduler.step(test_loss)
|
||
|
||
progress_manager.finish_epoch(train_loss, test_loss)
|
||
|
||
if (epoch + 1) % 5 == 0 or epoch == epochs - 1:
|
||
progress = ((epoch + 1) / epochs) * 100
|
||
current_metrics = {
|
||
'train_loss': train_loss,
|
||
'test_loss': test_loss,
|
||
'epoch': epoch + 1,
|
||
'total_epochs': epochs
|
||
}
|
||
emit_progress(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}",
|
||
progress=progress, metrics=current_metrics)
|
||
|
||
if (epoch + 1) % checkpoint_interval == 0 or epoch == epochs - 1:
|
||
checkpoint_data = {
|
||
'epoch': epoch + 1,
|
||
'model_state_dict': model.state_dict(),
|
||
'optimizer_state_dict': optimizer.state_dict(),
|
||
'train_loss': train_loss,
|
||
'test_loss': test_loss,
|
||
'train_losses': train_losses,
|
||
'test_losses': test_losses,
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y,
|
||
'config': {
|
||
'input_dim': input_dim,
|
||
'output_dim': output_dim,
|
||
'hidden_size': hidden_size,
|
||
'num_heads': num_heads,
|
||
'dropout': dropout_rate,
|
||
'num_layers': num_layers,
|
||
'sequence_length': sequence_length,
|
||
'forecast_horizon': forecast_horizon,
|
||
'model_type': 'transformer'
|
||
},
|
||
'training_info': {
|
||
'product_id': product_id,
|
||
'product_name': product_name,
|
||
'training_mode': training_mode,
|
||
'store_id': store_id,
|
||
'aggregation_method': aggregation_method,
|
||
'timestamp': time.time()
|
||
}
|
||
}
|
||
|
||
if test_loss < best_loss:
|
||
best_loss = test_loss
|
||
model_manager.save_model(
|
||
model_data=checkpoint_data,
|
||
product_id=model_identifier, # 修正:使用唯一的标识符
|
||
model_type='transformer',
|
||
store_id=store_id,
|
||
training_mode=training_mode,
|
||
aggregation_method=aggregation_method,
|
||
product_name=product_name,
|
||
version='best'
|
||
)
|
||
emit_progress(f"💾 保存最佳模型检查点 (epoch {epoch+1}, test_loss: {test_loss:.4f})")
|
||
epochs_no_improve = 0
|
||
else:
|
||
epochs_no_improve += 1
|
||
|
||
if (epoch + 1) % 10 == 0:
|
||
print(f"📊 Epoch {epoch+1}/{epochs}, 训练损失: {train_loss:.4f}, 测试损失: {test_loss:.4f}", flush=True)
|
||
|
||
if epochs_no_improve >= patience:
|
||
emit_progress(f"连续 {patience} 个epoch测试损失未改善,提前停止训练。")
|
||
break
|
||
|
||
training_time = time.time() - start_time
|
||
|
||
progress_manager.set_stage("model_saving", 0)
|
||
emit_progress("训练完成,正在保存模型...")
|
||
|
||
loss_curve_path = plot_loss_curve(
|
||
train_losses,
|
||
test_losses,
|
||
product_name,
|
||
'Transformer',
|
||
model_dir=model_dir
|
||
)
|
||
print(f"📈 损失曲线已保存到: {loss_curve_path}", flush=True)
|
||
|
||
model.eval()
|
||
with torch.no_grad():
|
||
test_pred = model(testX_tensor.to(DEVICE)).cpu().numpy()
|
||
test_true = testY
|
||
|
||
test_pred_inv = scaler_y.inverse_transform(test_pred)
|
||
test_true_inv = scaler_y.inverse_transform(test_true)
|
||
|
||
metrics = evaluate_model(test_true_inv, test_pred_inv)
|
||
metrics['training_time'] = training_time
|
||
|
||
print(f"\n📊 模型评估指标:", flush=True)
|
||
print(f" MSE: {metrics['mse']:.4f}", flush=True)
|
||
print(f" RMSE: {metrics['rmse']:.4f}", flush=True)
|
||
print(f" MAE: {metrics['mae']:.4f}", flush=True)
|
||
print(f" R²: {metrics['r2']:.4f}", flush=True)
|
||
print(f" MAPE: {metrics['mape']:.2f}%", flush=True)
|
||
print(f" ⏱️ 训练时间: {training_time:.2f}秒", flush=True)
|
||
|
||
final_model_data = {
|
||
'epoch': epochs,
|
||
'model_state_dict': model.state_dict(),
|
||
'optimizer_state_dict': optimizer.state_dict(),
|
||
'train_loss': train_losses[-1],
|
||
'test_loss': test_losses[-1],
|
||
'train_losses': train_losses,
|
||
'test_losses': test_losses,
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y,
|
||
'config': {
|
||
'input_dim': input_dim,
|
||
'output_dim': output_dim,
|
||
'hidden_size': hidden_size,
|
||
'num_heads': num_heads,
|
||
'dropout': dropout_rate,
|
||
'num_layers': num_layers,
|
||
'sequence_length': sequence_length,
|
||
'forecast_horizon': forecast_horizon,
|
||
'model_type': 'transformer'
|
||
},
|
||
'metrics': metrics,
|
||
'loss_curve_path': loss_curve_path,
|
||
'training_info': {
|
||
'product_id': product_id,
|
||
'product_name': product_name,
|
||
'training_mode': training_mode,
|
||
'store_id': store_id,
|
||
'aggregation_method': aggregation_method,
|
||
'timestamp': time.time(),
|
||
'training_completed': True
|
||
}
|
||
}
|
||
|
||
progress_manager.set_stage("model_saving", 50)
|
||
|
||
final_model_path, final_version = model_manager.save_model(
|
||
model_data=final_model_data,
|
||
product_id=model_identifier, # 修正:使用唯一的标识符
|
||
model_type='transformer',
|
||
store_id=store_id,
|
||
training_mode=training_mode,
|
||
aggregation_method=aggregation_method,
|
||
product_name=product_name
|
||
)
|
||
|
||
progress_manager.set_stage("model_saving", 100)
|
||
emit_progress(f"模型已保存到 {final_model_path}")
|
||
|
||
print(f"💾 模型已保存到 {final_model_path}", flush=True)
|
||
|
||
final_metrics = {
|
||
'mse': metrics['mse'],
|
||
'rmse': metrics['rmse'],
|
||
'mae': metrics['mae'],
|
||
'r2': metrics['r2'],
|
||
'mape': metrics['mape'],
|
||
'training_time': training_time,
|
||
'final_epoch': epochs,
|
||
'version': final_version
|
||
}
|
||
|
||
return model, final_metrics, epochs
|
||
|
||
# --- 将此训练器注册到系统中 ---
|
||
from models.model_registry import register_trainer
|
||
register_trainer('transformer', train_product_model_with_transformer) |