ShopTRAINING/server/models/transformer_model.py

108 lines
4.7 KiB
Python

import torch
import torch.nn as nn
# 定义Transformer编码器
class TransformerEncoder(nn.Module):
def __init__(self, embed_dim, dense_dim, num_heads, dropout_rate):
super().__init__()
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate, batch_first=True)
self.dense1 = nn.Linear(embed_dim, dense_dim)
self.dense2 = nn.Linear(dense_dim, embed_dim)
self.layernorm1 = nn.LayerNorm(embed_dim)
self.layernorm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
self.activation = nn.ReLU()
def forward(self, inputs):
attn_output, _ = self.attention(inputs, inputs, inputs)
attn_output = self.dropout1(attn_output)
out1 = self.layernorm1(inputs + attn_output)
dense_output = self.dense1(out1)
dense_output = self.activation(dense_output)
dense_output = self.dense2(dense_output)
dense_output = self.dropout2(dense_output)
return self.layernorm2(out1 + dense_output)
# 定义Transformer解码器
class TransformerDecoder(nn.Module):
def __init__(self, embed_dim, dense_dim, num_heads, dropout_rate):
super().__init__()
self.attention1 = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate, batch_first=True)
self.attention2 = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate, batch_first=True)
self.dense1 = nn.Linear(embed_dim, dense_dim)
self.dense2 = nn.Linear(dense_dim, embed_dim)
self.layernorm1 = nn.LayerNorm(embed_dim)
self.layernorm2 = nn.LayerNorm(embed_dim)
self.layernorm3 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
self.dropout3 = nn.Dropout(dropout_rate)
self.activation = nn.ReLU()
def forward(self, inputs, encoder_outputs):
attn_output1, _ = self.attention1(inputs, inputs, inputs)
attn_output1 = self.dropout1(attn_output1)
out1 = self.layernorm1(inputs + attn_output1)
attn_output2, _ = self.attention2(out1, encoder_outputs, encoder_outputs)
attn_output2 = self.dropout2(attn_output2)
out2 = self.layernorm2(out1 + attn_output2)
dense_output = self.dense1(out2)
dense_output = self.activation(dense_output)
dense_output = self.dense2(dense_output)
dense_output = self.dropout3(dense_output)
return self.layernorm3(out2 + dense_output)
# 定义完整的Transformer模型
class TimeSeriesTransformer(nn.Module):
# 定义模型参数
input_size = 64
hidden_size = 128
num_layers = 1
def __init__(self, num_features, d_model=32, nhead=4, num_encoder_layers=3, dim_feedforward=32, dropout=0.1, output_sequence_length=1, seq_length=14, batch_size=32):
super().__init__()
# 映射参数
embed_dim = d_model
dense_dim = dim_feedforward
num_heads = nhead
dropout_rate = dropout
num_blocks = num_encoder_layers
self.input_embedding = nn.Linear(num_features, embed_dim)
self.positional_encoding = nn.Parameter(torch.randn(1, 1000, embed_dim) * 0.1) # 足够长的位置编码
self.encoders = nn.ModuleList([TransformerEncoder(embed_dim, dense_dim, num_heads, dropout_rate) for _ in range(num_blocks)])
self.decoders = nn.ModuleList([TransformerDecoder(embed_dim, dense_dim, num_heads, dropout_rate) for _ in range(num_blocks)])
self.output_layer = nn.Linear(embed_dim, 1) # 输出单一销售量预测
self.dropout = nn.Dropout(dropout_rate)
self.output_sequence_length = output_sequence_length
self.seq_length = seq_length
self.batch_size = batch_size
def forward(self, inputs):
# inputs shape: [batch_size, sequence_length, num_features]
x = self.input_embedding(inputs)
x = x + self.positional_encoding[:, :x.size(1), :]
x = self.dropout(x)
# 编码器部分
encoder_outputs = x
for encoder in self.encoders:
encoder_outputs = encoder(encoder_outputs)
# 解码器部分 - 使用最后一个时间步作为decoder输入的起点
decoder_inputs = encoder_outputs[:, -1:, :].expand(-1, self.output_sequence_length, -1)
decoder_outputs = decoder_inputs
for decoder in self.decoders:
decoder_outputs = decoder(decoder_outputs, encoder_outputs)
# 移除最后一个维度,使输出为 (B, H)
return self.output_layer(decoder_outputs).squeeze(-1)