285 lines
10 KiB
Python
285 lines
10 KiB
Python
"""
|
||
药店销售预测系统 - 核心预测器类
|
||
"""
|
||
|
||
import os
|
||
import pandas as pd
|
||
import numpy as np
|
||
import torch
|
||
import time
|
||
import matplotlib.pyplot as plt
|
||
from datetime import datetime
|
||
|
||
from trainers import (
|
||
train_product_model_with_mlstm,
|
||
train_product_model_with_kan,
|
||
train_product_model_with_tcn,
|
||
train_product_model_with_transformer
|
||
)
|
||
from predictors.model_predictor import load_model_and_predict
|
||
from utils.data_utils import prepare_data, prepare_sequences
|
||
from analysis.metrics import evaluate_model
|
||
from core.config import DEVICE, DEFAULT_MODEL_DIR, DEFAULT_DATA_PATH
|
||
|
||
class PharmacyPredictor:
|
||
"""
|
||
药店销售预测系统核心类,用于训练模型和进行预测
|
||
"""
|
||
def __init__(self, data_path=DEFAULT_DATA_PATH, model_dir=DEFAULT_MODEL_DIR):
|
||
"""
|
||
初始化预测器
|
||
|
||
参数:
|
||
data_path: 数据文件路径
|
||
model_dir: 模型保存目录
|
||
"""
|
||
self.data_path = data_path
|
||
self.model_dir = model_dir
|
||
self.device = DEVICE
|
||
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
|
||
print(f"使用设备: {self.device}")
|
||
|
||
if os.path.exists(data_path):
|
||
self.data = pd.read_excel(data_path)
|
||
print(f"已加载数据,来源: {data_path}")
|
||
else:
|
||
print(f"数据文件 {data_path} 不存在,请先生成数据")
|
||
self.data = None
|
||
|
||
def train_model(self, product_id, model_type='transformer', epochs=100, batch_size=32,
|
||
learning_rate=0.001, sequence_length=30, forecast_horizon=7,
|
||
hidden_size=64, num_layers=2, dropout=0.1, use_optimized=False):
|
||
"""
|
||
训练预测模型
|
||
|
||
参数:
|
||
product_id: 产品ID
|
||
model_type: 模型类型 ('transformer', 'mlstm', 'kan', 'tcn', 'optimized_kan')
|
||
epochs: 训练轮次
|
||
batch_size: 批次大小
|
||
learning_rate: 学习率
|
||
sequence_length: 输入序列长度
|
||
forecast_horizon: 预测天数
|
||
hidden_size: 隐藏层大小
|
||
num_layers: 层数
|
||
dropout: Dropout比例
|
||
use_optimized: 是否使用优化版KAN(仅当model_type为'kan'时有效)
|
||
|
||
返回:
|
||
metrics: 模型评估指标
|
||
"""
|
||
if self.data is None:
|
||
print("没有可用的数据,请先加载或生成数据")
|
||
return None
|
||
|
||
product_data = self.data[self.data['product_id'] == product_id].copy()
|
||
if product_data.empty:
|
||
print(f"找不到产品 {product_id} 的数据")
|
||
return None
|
||
|
||
if model_type == 'transformer':
|
||
_, metrics = train_product_model_with_transformer(product_id, epochs=epochs, model_dir=self.model_dir)
|
||
elif model_type == 'mlstm':
|
||
_, metrics = train_product_model_with_mlstm(product_id, epochs=epochs, model_dir=self.model_dir)
|
||
elif model_type == 'kan':
|
||
_, metrics = train_product_model_with_kan(product_id, epochs=epochs, use_optimized=use_optimized, model_dir=self.model_dir)
|
||
elif model_type == 'optimized_kan':
|
||
_, metrics = train_product_model_with_kan(product_id, epochs=epochs, use_optimized=True, model_dir=self.model_dir)
|
||
elif model_type == 'tcn':
|
||
_, metrics = train_product_model_with_tcn(product_id, epochs=epochs, model_dir=self.model_dir)
|
||
else:
|
||
print(f"不支持的模型类型: {model_type}")
|
||
return None
|
||
|
||
return metrics
|
||
|
||
def predict(self, product_id, model_type, future_days=7, start_date=None, analyze_result=False):
|
||
"""
|
||
使用已训练的模型进行预测
|
||
|
||
参数:
|
||
product_id: 产品ID
|
||
model_type: 模型类型
|
||
future_days: 预测未来天数
|
||
start_date: 预测起始日期
|
||
analyze_result: 是否分析预测结果
|
||
|
||
返回:
|
||
预测结果和分析(如果analyze_result为True)
|
||
"""
|
||
return load_model_and_predict(
|
||
product_id,
|
||
model_type,
|
||
future_days=future_days,
|
||
start_date=start_date,
|
||
analyze_result=analyze_result
|
||
)
|
||
|
||
def train_optimized_kan_model(self, product_id, epochs=100, batch_size=32,
|
||
learning_rate=0.001, sequence_length=30, forecast_horizon=7,
|
||
hidden_size=64, num_layers=2, dropout=0.1):
|
||
"""
|
||
训练优化版KAN模型(便捷方法)
|
||
|
||
参数与train_model相同,但固定model_type为'kan'且use_optimized为True
|
||
"""
|
||
return self.train_model(
|
||
product_id=product_id,
|
||
model_type='kan',
|
||
epochs=epochs,
|
||
batch_size=batch_size,
|
||
learning_rate=learning_rate,
|
||
sequence_length=sequence_length,
|
||
forecast_horizon=forecast_horizon,
|
||
hidden_size=hidden_size,
|
||
num_layers=num_layers,
|
||
dropout=dropout,
|
||
use_optimized=True
|
||
)
|
||
|
||
def compare_kan_models(self, product_id, epochs=100, batch_size=32,
|
||
learning_rate=0.001, sequence_length=30, forecast_horizon=7,
|
||
hidden_size=64, num_layers=2, dropout=0.1):
|
||
"""
|
||
比较原始KAN和优化版KAN模型性能
|
||
|
||
参数与train_model相同
|
||
|
||
返回:
|
||
比较结果字典
|
||
"""
|
||
print(f"开始比较产品 {product_id} 的原始KAN和优化版KAN模型性能...")
|
||
|
||
# 训练原始KAN模型
|
||
print("\n训练原始KAN模型...")
|
||
kan_metrics = self.train_model(
|
||
product_id=product_id,
|
||
model_type='kan',
|
||
epochs=epochs,
|
||
batch_size=batch_size,
|
||
learning_rate=learning_rate,
|
||
sequence_length=sequence_length,
|
||
forecast_horizon=forecast_horizon,
|
||
hidden_size=hidden_size,
|
||
num_layers=num_layers,
|
||
dropout=dropout,
|
||
use_optimized=False
|
||
)
|
||
|
||
# 训练优化版KAN模型
|
||
print("\n训练优化版KAN模型...")
|
||
optimized_kan_metrics = self.train_model(
|
||
product_id=product_id,
|
||
model_type='kan',
|
||
epochs=epochs,
|
||
batch_size=batch_size,
|
||
learning_rate=learning_rate,
|
||
sequence_length=sequence_length,
|
||
forecast_horizon=forecast_horizon,
|
||
hidden_size=hidden_size,
|
||
num_layers=num_layers,
|
||
dropout=dropout,
|
||
use_optimized=True
|
||
)
|
||
|
||
# 比较结果
|
||
comparison = {
|
||
'kan': kan_metrics,
|
||
'optimized_kan': optimized_kan_metrics
|
||
}
|
||
|
||
# 打印比较结果
|
||
print("\n模型性能比较:")
|
||
print(f"{'指标':<10} {'原始KAN':<15} {'优化版KAN':<15} {'改进百分比':<15}")
|
||
print("-" * 55)
|
||
|
||
for metric in ['mse', 'rmse', 'mae', 'mape']:
|
||
if metric in kan_metrics and metric in optimized_kan_metrics:
|
||
kan_value = kan_metrics[metric]
|
||
opt_value = optimized_kan_metrics[metric]
|
||
improvement = (kan_value - opt_value) / kan_value * 100 if kan_value != 0 else 0
|
||
print(f"{metric.upper():<10} {kan_value:<15.4f} {opt_value:<15.4f} {improvement:<15.2f}%")
|
||
|
||
# R²值越高越好,所以计算改进的方式不同
|
||
if 'r2' in kan_metrics and 'r2' in optimized_kan_metrics:
|
||
kan_r2 = kan_metrics['r2']
|
||
opt_r2 = optimized_kan_metrics['r2']
|
||
improvement = (opt_r2 - kan_r2) / (1 - kan_r2) * 100 if kan_r2 != 1 else 0
|
||
print(f"{'R²':<10} {kan_r2:<15.4f} {opt_r2:<15.4f} {improvement:<15.2f}%")
|
||
|
||
# 训练时间
|
||
if 'training_time' in kan_metrics and 'training_time' in optimized_kan_metrics:
|
||
kan_time = kan_metrics['training_time']
|
||
opt_time = optimized_kan_metrics['training_time']
|
||
time_diff = (opt_time - kan_time) / kan_time * 100 if kan_time != 0 else 0
|
||
print(f"{'时间(秒)':<10} {kan_time:<15.2f} {opt_time:<15.2f} {time_diff:<15.2f}%")
|
||
|
||
return comparison
|
||
|
||
def list_available_models(self, product_id=None):
|
||
"""
|
||
列出可用的已训练模型
|
||
|
||
参数:
|
||
product_id: 产品ID,如果为None则列出所有模型
|
||
|
||
返回:
|
||
可用模型列表
|
||
"""
|
||
if not os.path.exists(self.model_dir):
|
||
print(f"模型目录 {self.model_dir} 不存在")
|
||
return []
|
||
|
||
model_files = os.listdir(self.model_dir)
|
||
|
||
if product_id:
|
||
model_files = [f for f in model_files if f"product_{product_id}" in f]
|
||
|
||
models = []
|
||
for file in model_files:
|
||
if file.endswith('.pth'):
|
||
# 处理不同的模型文件命名格式
|
||
if "kan_optimized_model" in file:
|
||
model_type = "optimized_kan"
|
||
product_id = file.split('_product_')[1].split('.pth')[0]
|
||
elif "_optimized_model" in file:
|
||
model_type = "optimized_kan"
|
||
product_id = file.split('_product_')[1].split('.pth')[0]
|
||
else:
|
||
model_type = file.split('_model_product_')[0]
|
||
product_id = file.split('_product_')[1].split('.pth')[0]
|
||
|
||
models.append({
|
||
'model_type': model_type,
|
||
'product_id': product_id,
|
||
'file_name': file,
|
||
'file_path': os.path.join(self.model_dir, file)
|
||
})
|
||
|
||
return models
|
||
|
||
def delete_model(self, product_id, model_type):
|
||
"""
|
||
删除已训练的模型
|
||
|
||
参数:
|
||
product_id: 产品ID
|
||
model_type: 模型类型
|
||
|
||
返回:
|
||
是否成功删除
|
||
"""
|
||
model_suffix = '_optimized' if model_type == 'optimized_kan' else ''
|
||
model_name = f"{model_type}{model_suffix}_model_product_{product_id}.pth"
|
||
model_path = os.path.join(self.model_dir, model_name)
|
||
|
||
if os.path.exists(model_path):
|
||
os.remove(model_path)
|
||
print(f"已删除模型: {model_path}")
|
||
return True
|
||
else:
|
||
print(f"模型文件 {model_path} 不存在")
|
||
return False |