ShopTRAINING/server/trainers/tcn_trainer.py

391 lines
13 KiB
Python

"""
药店销售预测系统 - TCN模型训练函数
"""
import os
import time
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from tqdm import tqdm
from models.tcn_model import TCNForecaster
from utils.data_utils import prepare_data, PharmacyDataset, prepare_sequences
from utils.visualization import plot_loss_curve
from analysis.metrics import evaluate_model
from core.config import DEVICE, DEFAULT_MODEL_DIR, LOOK_BACK, FORECAST_HORIZON
from utils.training_progress import progress_manager
from utils.model_manager import model_manager
def train_product_model_with_tcn(
model_identifier: str,
training_df: pd.DataFrame,
feature_list: list,
training_mode: str,
epochs: int = 50,
sequence_length: int = LOOK_BACK,
forecast_horizon: int = FORECAST_HORIZON,
model_dir: str = DEFAULT_MODEL_DIR,
product_id: str = None,
store_id: str = None,
aggregation_method: str = None,
version: str = None,
socketio=None,
task_id: str = None,
progress_callback=None,
**kwargs
):
"""
使用TCN模型训练产品销售预测模型 (新数据管道版)
"""
def emit_progress(message, progress=None, metrics=None):
"""发送训练进度到前端"""
if socketio and task_id:
data = {
'task_id': task_id,
'message': message,
'timestamp': time.time()
}
if progress is not None:
data['progress'] = progress
if metrics is not None:
data['metrics'] = metrics
socketio.emit('training_progress', data, namespace='/training')
emit_progress(f"开始训练 TCN 模型")
min_required_samples = sequence_length + forecast_horizon
if len(training_df) < min_required_samples:
error_msg = f"训练数据不足: 需要 {min_required_samples} 条记录, 但只有 {len(training_df)} 条。"
emit_progress(error_msg)
raise ValueError(error_msg)
product_name = training_df['product_name'].iloc[0] if 'product_name' in training_df.columns else model_identifier
emit_progress(f"开始为 '{product_name}' (标识: {model_identifier}) 训练TCN模型")
# --- 新数据管道核心改造 ---
emit_progress("数据预处理中...")
# 1. 使用标准化的 prepare_data 函数处理数据
_, _, trainX, testX, trainY, testY, scaler_X, scaler_y = prepare_data(
training_df=training_df,
feature_list=feature_list,
target_column='net_sales_quantity',
sequence_length=sequence_length,
forecast_horizon=forecast_horizon
)
# 2. 使用标准化的 prepare_sequences 函数创建 DataLoader
batch_size = 32
train_loader = prepare_sequences(trainX, trainY, batch_size)
test_loader = prepare_sequences(testX, testY, batch_size)
total_batches = len(train_loader)
total_samples = len(trainX)
if hasattr(progress_manager, 'total_batches_per_epoch'):
progress_manager.total_batches_per_epoch = total_batches
progress_manager.batch_size = batch_size
progress_manager.total_samples = total_samples
input_dim = trainX.shape[2]
output_dim = forecast_horizon
hidden_size = 64
num_layers = 3
kernel_size = 3
dropout_rate = 0.2
model = TCNForecaster(
num_features=input_dim,
output_sequence_length=output_dim,
num_channels=[hidden_size] * num_layers,
kernel_size=kernel_size,
dropout=dropout_rate
)
# TODO: Implement continue_training logic with the new model_manager
model = model.to(DEVICE)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
emit_progress("开始模型训练...")
train_losses = []
test_losses = []
start_time = time.time()
# 版本锁定
current_version = model_manager.peek_next_version(
model_type='tcn',
product_id=product_id,
store_id=store_id,
training_mode=training_mode,
aggregation_method=aggregation_method
)
print(f"🔒 本次训练版本锁定为: {current_version}")
checkpoint_interval = max(1, epochs // 10)
best_loss = float('inf')
best_model_path = None
progress_manager.set_stage("model_training", 0)
emit_progress(f"开始训练 - 总epoch: {epochs}, 检查点间隔: {checkpoint_interval}")
for epoch in range(epochs):
progress_manager.start_epoch(epoch)
model.train()
epoch_loss = 0
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
if y_batch.dim() == 2:
y_batch = y_batch.unsqueeze(-1)
outputs = model(X_batch)
loss = criterion(outputs, y_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
if batch_idx % 10 == 0 or batch_idx == len(train_loader) - 1:
current_lr = optimizer.param_groups[0]['lr']
progress_manager.update_batch(batch_idx, loss.item(), current_lr)
train_loss = epoch_loss / len(train_loader)
train_losses.append(train_loss)
progress_manager.set_stage("validation", 0)
model.eval()
test_loss = 0
with torch.no_grad():
for batch_idx, (X_batch, y_batch) in enumerate(test_loader):
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
if y_batch.dim() == 2:
y_batch = y_batch.unsqueeze(-1)
outputs = model(X_batch)
loss = criterion(outputs, y_batch)
test_loss += loss.item()
if batch_idx % 5 == 0 or batch_idx == len(test_loader) - 1:
val_progress = (batch_idx / len(test_loader)) * 100
progress_manager.set_stage("validation", val_progress)
test_loss = test_loss / len(test_loader)
test_losses.append(test_loss)
progress_manager.finish_epoch(train_loss, test_loss)
if (epoch + 1) % 5 == 0 or epoch == epochs - 1:
progress = ((epoch + 1) / epochs) * 100
current_metrics = {
'train_loss': train_loss,
'test_loss': test_loss,
'epoch': epoch + 1,
'total_epochs': epochs
}
emit_progress(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}",
progress=progress, metrics=current_metrics)
if (epoch + 1) % checkpoint_interval == 0 or epoch == epochs - 1:
checkpoint_data = {
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': train_loss,
'test_loss': test_loss,
'train_losses': train_losses,
'test_losses': test_losses,
'scaler_X': scaler_X,
'scaler_y': scaler_y,
'config': {
'input_dim': input_dim,
'output_dim': output_dim,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_channels': [hidden_size] * num_layers,
'dropout': dropout_rate,
'kernel_size': kernel_size,
'sequence_length': sequence_length,
'forecast_horizon': forecast_horizon,
'model_type': 'tcn'
},
'training_info': {
'product_id': product_id,
'product_name': product_name,
'training_mode': training_mode,
'store_id': store_id,
'aggregation_method': aggregation_method,
'timestamp': time.time()
}
}
if test_loss < best_loss:
best_loss = test_loss
best_model_path, _ = model_manager.save_model(
model_data=checkpoint_data,
product_id=product_id,
model_type='tcn',
store_id=store_id,
training_mode=training_mode,
aggregation_method=aggregation_method,
product_name=product_name,
version=f"{current_version}_best"
)
emit_progress(f"💾 保存最佳模型检查点 (epoch {epoch+1}, test_loss: {test_loss:.4f})")
if (epoch + 1) % 10 == 0:
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
training_time = time.time() - start_time
progress_manager.set_stage("model_saving", 0)
emit_progress("训练完成,正在保存模型...")
model.eval()
with torch.no_grad():
all_test_X = []
all_test_Y = []
for X_batch, y_batch in test_loader:
all_test_X.append(X_batch)
all_test_Y.append(y_batch)
testX_tensor = torch.cat(all_test_X, dim=0)
testY_tensor = torch.cat(all_test_Y, dim=0)
test_pred = model(testX_tensor.to(DEVICE))
test_pred = test_pred.squeeze(-1).cpu().numpy()
# 反归一化需要reshape
test_pred_inv = scaler_y.inverse_transform(test_pred)
test_true_inv = scaler_y.inverse_transform(testY_tensor.cpu().numpy())
metrics = evaluate_model(test_true_inv, test_pred_inv)
metrics['training_time'] = training_time
print("\n模型评估指标:")
print(f"MSE: {metrics['mse']:.4f}")
print(f"RMSE: {metrics['rmse']:.4f}")
print(f"MAE: {metrics['mae']:.4f}")
print(f"R²: {metrics['r2']:.4f}")
print(f"MAPE: {metrics['mape']:.2f}%")
print(f"训练时间: {training_time:.2f}")
final_model_data = {
'epoch': epochs,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': train_losses[-1],
'test_loss': test_losses[-1],
'train_losses': train_losses,
'test_losses': test_losses,
'scaler_X': scaler_X,
'scaler_y': scaler_y,
'config': {
'input_dim': input_dim,
'output_dim': output_dim,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_channels': [hidden_size] * num_layers,
'dropout': dropout_rate,
'kernel_size': kernel_size,
'sequence_length': sequence_length,
'forecast_horizon': forecast_horizon,
'model_type': 'tcn'
},
'metrics': metrics,
'metrics': metrics,
'training_info': {
'product_id': product_id,
'product_name': product_name,
'training_mode': training_mode,
'store_id': store_id,
'aggregation_method': aggregation_method,
'timestamp': time.time(),
'training_completed': True
}
}
progress_manager.set_stage("model_saving", 50)
final_model_path, final_version = model_manager.save_model(
model_data=final_model_data,
product_id=product_id,
model_type='tcn',
store_id=store_id,
training_mode=training_mode,
aggregation_method=aggregation_method,
product_name=product_name,
version=current_version
)
progress_manager.set_stage("model_saving", 100)
final_metrics = {
'mse': metrics['mse'],
'rmse': metrics['rmse'],
'mae': metrics['mae'],
'r2': metrics['r2'],
'mape': metrics['mape'],
'training_time': training_time,
'final_epoch': epochs,
'version': final_version
}
emit_progress(f"模型训练完成!版本 {final_version} 已保存", progress=100, metrics=final_metrics)
# 准备 scope 和 identifier 以生成标准化的文件名
scope = training_mode
if scope == 'product':
identifier = model_identifier
elif scope == 'store':
identifier = store_id
elif scope == 'global':
identifier = aggregation_method
else:
identifier = product_name # 后备方案
# 绘制带有版本号的损失曲线图
loss_curve_path = plot_loss_curve(
train_losses=train_losses,
val_losses=test_losses,
model_type='tcn',
scope=scope,
identifier=identifier,
version=current_version, # 使用锁定的版本
model_dir=model_dir
)
print(f"📈 带版本号的损失曲线已保存: {loss_curve_path}")
# 更新模型数据中的损失图路径
final_model_data['loss_curve_path'] = loss_curve_path
artifacts = {
"versioned_model": final_model_path,
"loss_curve_plot": loss_curve_path,
"best_model": best_model_path,
"version": final_version
}
return metrics, artifacts
# --- 将此训练器注册到系统中 ---
from models.model_registry import register_trainer
register_trainer('tcn', train_product_model_with_tcn)