325 lines
11 KiB
Python
325 lines
11 KiB
Python
"""
|
||
药店销售预测系统 - KAN模型训练函数
|
||
"""
|
||
|
||
import os
|
||
import time
|
||
import pandas as pd
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
from torch.utils.data import DataLoader
|
||
from sklearn.preprocessing import MinMaxScaler
|
||
import matplotlib.pyplot as plt
|
||
from tqdm import tqdm
|
||
|
||
from models.kan_model import KANForecaster
|
||
from models.optimized_kan_forecaster import OptimizedKANForecaster
|
||
from utils.data_utils import prepare_data, PharmacyDataset, prepare_sequences
|
||
from utils.visualization import plot_loss_curve
|
||
from analysis.metrics import evaluate_model
|
||
from core.config import DEVICE, DEFAULT_MODEL_DIR, LOOK_BACK, FORECAST_HORIZON
|
||
|
||
def train_product_model_with_kan(
|
||
model_identifier: str,
|
||
training_df: pd.DataFrame,
|
||
feature_list: list,
|
||
training_mode: str,
|
||
epochs: int = 50,
|
||
sequence_length: int = LOOK_BACK,
|
||
forecast_horizon: int = FORECAST_HORIZON,
|
||
use_optimized: bool = False,
|
||
model_dir: str = DEFAULT_MODEL_DIR,
|
||
product_id: str = None,
|
||
store_id: str = None,
|
||
aggregation_method: str = None,
|
||
version: str = None,
|
||
**kwargs
|
||
):
|
||
"""
|
||
使用KAN模型训练产品销售预测模型 (新数据管道版)
|
||
"""
|
||
min_required_samples = sequence_length + forecast_horizon
|
||
if len(training_df) < min_required_samples:
|
||
raise ValueError(f"数据不足: 需要 {min_required_samples} 条, 实际 {len(training_df)} 条。")
|
||
|
||
product_name = training_df['product_name'].iloc[0] if 'product_name' in training_df.columns else model_identifier
|
||
model_type_name = "优化版KAN" if use_optimized else "KAN"
|
||
print(f"开始为 '{product_name}' (标识: {model_identifier}) 训练{model_type_name}模型")
|
||
|
||
# --- 新数据管道核心改造 ---
|
||
print(f"[{model_type_name}] 开始数据预处理,使用 {len(feature_list)} 个预选特征...")
|
||
|
||
# 1. 使用标准化的 prepare_data 函数处理数据
|
||
_, _, trainX, testX, trainY, testY, scaler_X, scaler_y = prepare_data(
|
||
training_df=training_df,
|
||
feature_list=feature_list,
|
||
target_column='net_sales_quantity',
|
||
sequence_length=sequence_length,
|
||
forecast_horizon=forecast_horizon
|
||
)
|
||
|
||
# 2. 使用标准化的 prepare_sequences 函数创建 DataLoader
|
||
batch_size = 32
|
||
train_loader = prepare_sequences(trainX, trainY, batch_size)
|
||
test_loader = prepare_sequences(testX, testY, batch_size)
|
||
|
||
# 初始化KAN模型
|
||
input_dim = trainX.shape[2]
|
||
output_dim = forecast_horizon
|
||
hidden_size = 64
|
||
|
||
if use_optimized:
|
||
model = OptimizedKANForecaster(
|
||
input_features=input_dim,
|
||
hidden_sizes=[hidden_size, hidden_size*2, hidden_size],
|
||
output_sequence_length=output_dim
|
||
)
|
||
else:
|
||
model = KANForecaster(
|
||
input_features=input_dim,
|
||
hidden_sizes=[hidden_size, hidden_size*2, hidden_size],
|
||
output_sequence_length=output_dim
|
||
)
|
||
|
||
# 将模型移动到设备上
|
||
model = model.to(DEVICE)
|
||
|
||
criterion = nn.MSELoss()
|
||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||
|
||
# 训练模型
|
||
from utils.model_manager import model_manager
|
||
model_type_name = 'optimized_kan' if use_optimized else 'kan'
|
||
current_version = model_manager.peek_next_version(
|
||
model_type=model_type_name,
|
||
product_id=product_id,
|
||
store_id=store_id,
|
||
training_mode=training_mode,
|
||
aggregation_method=aggregation_method
|
||
)
|
||
print(f"🔒 本次训练版本锁定为: {current_version}")
|
||
|
||
train_losses = []
|
||
test_losses = []
|
||
start_time = time.time()
|
||
best_loss = float('inf')
|
||
best_model_path = None
|
||
|
||
for epoch in range(epochs):
|
||
model.train()
|
||
epoch_loss = 0
|
||
for X_batch, y_batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}", leave=False):
|
||
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
||
|
||
# 确保目标张量有正确的形状 (batch_size, forecast_horizon, 1)
|
||
if y_batch.dim() == 2:
|
||
y_batch = y_batch.unsqueeze(-1)
|
||
|
||
# 前向传播
|
||
outputs = model(X_batch)
|
||
|
||
# 确保输出形状与目标匹配
|
||
if outputs.dim() == 2:
|
||
outputs = outputs.unsqueeze(-1)
|
||
|
||
loss = criterion(outputs, y_batch)
|
||
|
||
# 如果是KAN模型,加入正则化损失
|
||
if hasattr(model, 'regularization_loss'):
|
||
loss = loss + model.regularization_loss() * 0.01
|
||
|
||
# 反向传播和优化
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
|
||
epoch_loss += loss.item()
|
||
|
||
# 计算训练损失
|
||
train_loss = epoch_loss / len(train_loader)
|
||
train_losses.append(train_loss)
|
||
|
||
# 在测试集上评估
|
||
model.eval()
|
||
test_loss = 0
|
||
with torch.no_grad():
|
||
for X_batch, y_batch in test_loader:
|
||
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
||
|
||
# 确保目标张量有正确的形状
|
||
if y_batch.dim() == 2:
|
||
y_batch = y_batch.unsqueeze(-1)
|
||
|
||
outputs = model(X_batch)
|
||
|
||
# 确保输出形状与目标匹配
|
||
if outputs.dim() == 2:
|
||
outputs = outputs.unsqueeze(-1)
|
||
|
||
loss = criterion(outputs, y_batch)
|
||
test_loss += loss.item()
|
||
|
||
test_loss = test_loss / len(test_loader)
|
||
test_losses.append(test_loss)
|
||
|
||
# 检查是否为最佳模型
|
||
model_type_name = 'optimized_kan' if use_optimized else 'kan'
|
||
if test_loss < best_loss:
|
||
best_loss = test_loss
|
||
print(f"🎉 新的最佳模型发现在 epoch {epoch+1},测试损失: {test_loss:.4f}")
|
||
|
||
# 为保存最佳模型准备数据
|
||
best_model_data = {
|
||
'model_state_dict': model.state_dict(),
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y,
|
||
'config': {
|
||
'input_dim': input_dim,
|
||
'output_dim': output_dim,
|
||
'hidden_size': hidden_size,
|
||
'hidden_sizes': [hidden_size, hidden_size * 2, hidden_size],
|
||
'sequence_length': sequence_length,
|
||
'forecast_horizon': forecast_horizon,
|
||
'model_type': model_type_name,
|
||
'use_optimized': use_optimized
|
||
},
|
||
'epoch': epoch + 1
|
||
}
|
||
|
||
# 使用模型管理器保存 'best' 版本
|
||
from utils.model_manager import model_manager
|
||
best_model_path, _ = model_manager.save_model(
|
||
model_data=best_model_data,
|
||
product_id=product_id,
|
||
model_type=model_type_name,
|
||
store_id=store_id,
|
||
training_mode=training_mode,
|
||
aggregation_method=aggregation_method,
|
||
product_name=product_name,
|
||
version=f"{current_version}_best"
|
||
)
|
||
|
||
if (epoch + 1) % 10 == 0:
|
||
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
|
||
|
||
# 计算训练时间
|
||
training_time = time.time() - start_time
|
||
|
||
# 绘制损失曲线并保存到模型目录
|
||
|
||
# 评估模型
|
||
model.eval()
|
||
with torch.no_grad():
|
||
all_test_X = []
|
||
all_test_Y = []
|
||
for X_batch, y_batch in test_loader:
|
||
all_test_X.append(X_batch)
|
||
all_test_Y.append(y_batch)
|
||
|
||
testX_tensor = torch.cat(all_test_X, dim=0)
|
||
testY_tensor = torch.cat(all_test_Y, dim=0)
|
||
|
||
test_pred = model(testX_tensor.to(DEVICE)).cpu().numpy()
|
||
test_true = testY_tensor.cpu().numpy()
|
||
|
||
# 处理输出形状
|
||
if len(test_pred.shape) == 3:
|
||
test_pred = test_pred.squeeze(-1)
|
||
|
||
# 反归一化预测结果和真实值
|
||
test_pred_inv = scaler_y.inverse_transform(test_pred)
|
||
test_true_inv = scaler_y.inverse_transform(test_true)
|
||
|
||
# 计算评估指标
|
||
metrics = evaluate_model(test_true_inv, test_pred_inv)
|
||
metrics['training_time'] = training_time
|
||
|
||
# 打印评估指标
|
||
print("\n模型评估指标:")
|
||
print(f"MSE: {metrics['mse']:.4f}")
|
||
print(f"RMSE: {metrics['rmse']:.4f}")
|
||
print(f"MAE: {metrics['mae']:.4f}")
|
||
print(f"R²: {metrics['r2']:.4f}")
|
||
print(f"MAPE: {metrics['mape']:.2f}%")
|
||
print(f"训练时间: {training_time:.2f}秒")
|
||
|
||
# --- 5. 保存工件 ---
|
||
model_type_name = 'optimized_kan' if use_optimized else 'kan'
|
||
|
||
# 准备 scope 和 identifier 以生成标准化的文件名
|
||
scope = training_mode
|
||
if scope == 'product':
|
||
identifier = model_identifier
|
||
elif scope == 'store':
|
||
identifier = store_id
|
||
elif scope == 'global':
|
||
identifier = aggregation_method
|
||
else:
|
||
identifier = product_name # 后备方案
|
||
|
||
# 绘制带有版本号的损失曲线图
|
||
loss_curve_path = plot_loss_curve(
|
||
train_losses=train_losses,
|
||
val_losses=test_losses,
|
||
model_type=model_type_name,
|
||
scope=scope,
|
||
identifier=identifier,
|
||
version=current_version, # 使用锁定的版本
|
||
model_dir=model_dir
|
||
)
|
||
print(f"📈 带版本号的损失曲线已保存: {loss_curve_path}")
|
||
|
||
# 准备要保存的最终模型数据
|
||
model_data = {
|
||
'model_state_dict': model.state_dict(),
|
||
'scaler_X': scaler_X,
|
||
'scaler_y': scaler_y,
|
||
'config': {
|
||
'input_dim': input_dim,
|
||
'output_dim': output_dim,
|
||
'hidden_size': hidden_size,
|
||
'hidden_sizes': [hidden_size, hidden_size * 2, hidden_size],
|
||
'sequence_length': sequence_length,
|
||
'forecast_horizon': forecast_horizon,
|
||
'model_type': model_type_name,
|
||
'use_optimized': use_optimized
|
||
},
|
||
'metrics': metrics,
|
||
'loss_history': {
|
||
'train': train_losses,
|
||
'test': test_losses,
|
||
'epochs': list(range(1, epochs + 1))
|
||
},
|
||
'loss_curve_path': loss_curve_path # 直接包含路径
|
||
}
|
||
|
||
# 使用模型管理器保存最终模型
|
||
from utils.model_manager import model_manager
|
||
final_model_path, final_version = model_manager.save_model(
|
||
model_data=model_data,
|
||
product_id=product_id,
|
||
model_type=model_type_name,
|
||
store_id=store_id,
|
||
training_mode=training_mode,
|
||
aggregation_method=aggregation_method,
|
||
product_name=product_name,
|
||
version=current_version # 使用锁定的版本
|
||
)
|
||
print(f"✅ {model_type_name} 最终模型已保存,版本: {final_version}")
|
||
|
||
# 组装返回的工件
|
||
artifacts = {
|
||
"versioned_model": final_model_path,
|
||
"loss_curve_plot": loss_curve_path,
|
||
"best_model": best_model_path,
|
||
"version": final_version
|
||
}
|
||
|
||
return metrics, artifacts
|
||
|
||
# --- 将此训练器注册到系统中 ---
|
||
from models.model_registry import register_trainer
|
||
register_trainer('kan', train_product_model_with_kan)
|
||
register_trainer('optimized_kan', train_product_model_with_kan) |