
1. 修复前端图表日期排序问题: - 改进 PredictionView.vue 和 HistoryView.vue 中的图表渲染逻辑 - 确保历史数据和预测数据按照正确的日期顺序显示 2. 修复后端API处理: - 解决 optimized_kan 模型类型的路径映射问题 - 添加 JSON 序列化器处理 Pandas Timestamp 对象 - 改进预测数据与历史数据的衔接处理 3. 优化图表样式和用户体验
46 lines
1.9 KiB
Batchfile
46 lines
1.9 KiB
Batchfile
@echo off
|
||
chcp 65001 >nul
|
||
echo 药店销售预测系统 - 依赖库安装脚本
|
||
echo ==================================
|
||
echo.
|
||
|
||
echo 请选择要安装的版本:
|
||
echo 1. CPU版本(适用于没有NVIDIA GPU的计算机)
|
||
echo 2. GPU版本 - CUDA 12.1(适用于最新的NVIDIA GPU)
|
||
echo 3. GPU版本 - CUDA 11.8(适用于较旧的NVIDIA GPU)
|
||
echo.
|
||
|
||
set /p choice=请输入选项 (1/2/3):
|
||
|
||
if "%choice%"=="1" (
|
||
echo 正在安装CPU版本依赖...
|
||
pip install -r requirements.txt
|
||
) else if "%choice%"=="2" (
|
||
echo 正在安装GPU版本(CUDA 12.1)依赖...
|
||
echo 首先安装基础依赖...
|
||
pip install -r requirements-gpu.txt --no-deps
|
||
echo 安装除PyTorch以外的其他依赖...
|
||
pip install numpy==2.3.0 pandas==2.3.0 matplotlib==3.10.3 scikit-learn==1.7.0 tqdm==4.67.1 openpyxl==3.1.5
|
||
echo 从PyTorch官方源安装CUDA 12.1版本的PyTorch...
|
||
pip install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu121
|
||
) else if "%choice%"=="3" (
|
||
echo 正在安装GPU版本(CUDA 11.8)依赖...
|
||
echo 首先安装基础依赖...
|
||
pip install -r requirements-gpu-cu118.txt --no-deps
|
||
echo 安装除PyTorch以外的其他依赖...
|
||
pip install numpy==2.3.0 pandas==2.3.0 matplotlib==3.10.3 scikit-learn==1.7.0 tqdm==4.67.1 openpyxl==3.1.5
|
||
echo 从PyTorch官方源安装CUDA 11.8版本的PyTorch...
|
||
pip install torch==2.7.1 --index-url https://download.pytorch.org/whl/cu118
|
||
) else (
|
||
echo 无效的选项!请重新运行脚本并选择正确的选项。
|
||
goto end
|
||
)
|
||
|
||
echo.
|
||
echo 依赖库安装完成!
|
||
echo.
|
||
echo 验证PyTorch GPU支持状态...
|
||
python -c "import torch; print('CUDA是否可用:', torch.cuda.is_available()); print('PyTorch版本:', torch.__version__); print('GPU数量:', torch.cuda.device_count()); print('GPU名称:', torch.cuda.get_device_name(0) if torch.cuda.is_available() else '无GPU')"
|
||
|
||
:end
|
||
pause |