""" 药店销售预测系统 - 核心预测器类 支持多店铺销售预测功能 """ import os import pandas as pd import numpy as np import torch import time import matplotlib.pyplot as plt from datetime import datetime # from trainers import ( # train_product_model_with_mlstm, # train_product_model_with_kan, # train_product_model_with_tcn, # train_product_model_with_transformer # ) # 上述导入已不再需要,因为我们现在通过模型注册表动态获取训练器 from predictors.model_predictor import load_model_and_predict from utils.data_utils import prepare_data, prepare_sequences from utils.multi_store_data_utils import load_multi_store_data, aggregate_multi_store_data # 导入新的特征选择模块 from utils.feature_selection import get_feature_list_for_model from analysis.metrics import evaluate_model from core.config import DEVICE, DEFAULT_MODEL_DIR, DEFAULT_DATA_PATH class PharmacyPredictor: """ 药店销售预测系统核心类,用于训练模型和进行预测 """ def __init__(self, data_path=None, model_dir=DEFAULT_MODEL_DIR): """ 初始化预测器 参数: data_path: 数据文件路径,默认使用多店铺CSV文件 model_dir: 模型保存目录 """ # 设置默认数据路径为多店铺CSV文件 if data_path is None: data_path = DEFAULT_DATA_PATH self.data_path = data_path self.model_dir = model_dir self.device = DEVICE if not os.path.exists(model_dir): os.makedirs(model_dir) print(f"使用设备: {self.device}") # 尝试加载多店铺数据 try: self.data = load_multi_store_data(data_path) print(f"已加载多店铺数据,来源: {data_path}") except Exception as e: print(f"加载数据失败: {e}") self.data = None def train_model(self, product_id, model_type='transformer', epochs=100, batch_size=32, learning_rate=0.001, sequence_length=30, forecast_horizon=7, hidden_size=64, num_layers=2, dropout=0.1, use_optimized=False, store_id=None, training_mode='product', aggregation_method='sum', socketio=None, task_id=None, version=None, continue_training=False, progress_callback=None): """ 训练预测模型 - 支持多店铺训练 参数: product_id: 产品ID model_type: 模型类型 ('transformer', 'mlstm', 'kan', 'tcn', 'optimized_kan') epochs: 训练轮次 batch_size: 批次大小 learning_rate: 学习率 sequence_length: 输入序列长度 forecast_horizon: 预测天数 hidden_size: 隐藏层大小 num_layers: 层数 dropout: Dropout比例 use_optimized: 是否使用优化版KAN(仅当model_type为'kan'时有效) store_id: 店铺ID(仅当training_mode为'store'时使用) training_mode: 训练模式 ('product', 'store', 'global') aggregation_method: 聚合方法 ('sum', 'mean', 'median') - 仅用于全局训练 返回: metrics: 模型评估指标 """ # 创建统一的输出函数 def log_message(message, log_type='info'): """统一的日志输出函数""" print(message, flush=True) # 始终输出到控制台 # 如果有进度回调,也发送到回调 if progress_callback: try: progress_callback({ 'log_type': log_type, 'message': message }) except Exception as e: print(f"进度回调失败: {e}", flush=True) if self.data is None: log_message("没有可用的数据,请先加载或生成数据", 'error') return None # --- 新数据管道 --- # 1. 加载完整的、经过基础标准化的数据 # 注意:此时的load_multi_store_data已经过改造,不再创造特征 full_data = load_multi_store_data(self.data_path) if full_data.empty: log_message("错误:加载数据后得到空的DataFrame。", 'error') return None, None # 2. 根据训练模式,筛选出本次训练所需的数据子集 if training_mode == 'product': training_df = full_data[full_data['product_id'] == product_id].copy() model_identifier = product_id elif training_mode == 'store': training_df = full_data[full_data['store_id'] == store_id].copy() model_identifier = f"store_{store_id}" elif training_mode == 'global': # 全局模型使用所有数据 training_df = full_data.copy() model_identifier = f"global_{aggregation_method}" else: log_message(f"不支持的训练模式: {training_mode}", 'error') return None, None if training_df.empty: log_message(f"错误:根据训练模式 '{training_mode}' 和标识 '{product_id or store_id}' 筛选后,没有剩余数据。", 'error') return None, None log_message(f"数据筛选完成,用于训练的记录数: {len(training_df)}") # 3. 根据模型类型,获取专属的特征列表 all_columns = training_df.columns.tolist() feature_list = get_feature_list_for_model(model_type, all_columns) if not feature_list: log_message(f"错误:未能为模型 '{model_type}' 获取任何特征。", 'error') return None, None log_message(f"为模型 '{model_type}' 选择了 {len(feature_list)} 个特征: {feature_list[:5]}...") # 4. 调用相应的训练器,并传入数据和特征列表 try: from models.model_registry import get_trainer trainer_function = get_trainer(model_type) # --- 临时添加:用于快速测试的调试模式 --- debug_fast_mode = True if debug_fast_mode: print("🚀 快速测试模式已激活,截取前100条数据进行训练。") training_df = training_df.head(66) # ------------------------------------ # 准备通用参数 trainer_args = { 'product_id': product_id, 'model_identifier': model_identifier, 'training_df': training_df, # 传入筛选后的数据 'feature_list': feature_list, # 传入选择好的特征 'store_id': store_id, 'training_mode': training_mode, 'aggregation_method': aggregation_method, 'epochs': epochs, 'sequence_length': sequence_length, 'forecast_horizon': forecast_horizon, 'model_dir': self.model_dir, 'socketio': socketio, 'task_id': task_id, 'progress_callback': progress_callback, 'version': version, 'continue_training': continue_training, 'use_optimized': use_optimized } # 动态过滤不兼容的参数 import inspect sig = inspect.signature(trainer_function) valid_args = {k: v for k, v in trainer_args.items() if k in sig.parameters} log_message(f"准备调用 {trainer_function.__name__}...") result = trainer_function(**valid_args) # 解析返回结果 if isinstance(result, tuple) and len(result) >= 2: metrics, artifacts = result[0], result[1] else: log_message(f"训练器返回格式未知: {type(result)}", 'warning') return None, None # 在返回的metrics中添加训练信息 if metrics: metrics.update({ 'training_mode': training_mode, 'store_id': store_id, 'product_id': product_id, 'model_identifier': model_identifier, 'aggregation_method': aggregation_method if training_mode == 'global' else None }) return metrics, artifacts except Exception as e: import traceback log_message(f"模型训练失败: {e}\n{traceback.format_exc()}", 'error') return None, None def predict(self, product_id, model_type, future_days=7, start_date=None, analyze_result=False, version=None, store_id=None, training_mode='product', aggregation_method='sum'): """ 使用已训练的模型进行预测 - 支持多店铺预测 参数: product_id: 产品ID model_type: 模型类型 future_days: 预测未来天数 start_date: 预测起始日期 analyze_result: 是否分析预测结果 version: 模型版本,如果为None则使用最新版本 store_id: 店铺ID(仅当training_mode为'store'时使用) training_mode: 训练模式 ('product', 'store', 'global') aggregation_method: 聚合方法 ('sum', 'mean', 'median') - 仅用于全局预测 返回: 预测结果和分析(如果analyze_result为True) """ # 根据训练模式构建模型标识符 (v2 修正) if training_mode == 'store' and store_id: model_identifier = f"store_{store_id}" elif training_mode == 'global': # 全局模型的标识符不应依赖于单个product_id model_identifier = f"global_{aggregation_method}" else: # product mode model_identifier = product_id return load_model_and_predict( model_identifier, model_type, store_id=store_id, future_days=future_days, start_date=start_date, analyze_result=analyze_result, version=version, training_mode=training_mode ) def train_optimized_kan_model(self, product_id, epochs=100, batch_size=32, learning_rate=0.001, sequence_length=30, forecast_horizon=7, hidden_size=64, num_layers=2, dropout=0.1): """ 训练优化版KAN模型(便捷方法) 参数与train_model相同,但固定model_type为'kan'且use_optimized为True """ return self.train_model( product_id=product_id, model_type='kan', epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, sequence_length=sequence_length, forecast_horizon=forecast_horizon, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, use_optimized=True ) def compare_kan_models(self, product_id, epochs=100, batch_size=32, learning_rate=0.001, sequence_length=30, forecast_horizon=7, hidden_size=64, num_layers=2, dropout=0.1): """ 比较原始KAN和优化版KAN模型性能 参数与train_model相同 返回: 比较结果字典 """ print(f"开始比较产品 {product_id} 的原始KAN和优化版KAN模型性能...") # 训练原始KAN模型 print("\n训练原始KAN模型...") kan_metrics = self.train_model( product_id=product_id, model_type='kan', epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, sequence_length=sequence_length, forecast_horizon=forecast_horizon, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, use_optimized=False ) # 训练优化版KAN模型 print("\n训练优化版KAN模型...") optimized_kan_metrics = self.train_model( product_id=product_id, model_type='kan', epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, sequence_length=sequence_length, forecast_horizon=forecast_horizon, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, use_optimized=True ) # 比较结果 comparison = { 'kan': kan_metrics, 'optimized_kan': optimized_kan_metrics } # 打印比较结果 print("\n模型性能比较:") print(f"{'指标':<10} {'原始KAN':<15} {'优化版KAN':<15} {'改进百分比':<15}") print("-" * 55) for metric in ['mse', 'rmse', 'mae', 'mape']: if metric in kan_metrics and metric in optimized_kan_metrics: kan_value = kan_metrics[metric] opt_value = optimized_kan_metrics[metric] improvement = (kan_value - opt_value) / kan_value * 100 if kan_value != 0 else 0 print(f"{metric.upper():<10} {kan_value:<15.4f} {opt_value:<15.4f} {improvement:<15.2f}%") # R²值越高越好,所以计算改进的方式不同 if 'r2' in kan_metrics and 'r2' in optimized_kan_metrics: kan_r2 = kan_metrics['r2'] opt_r2 = optimized_kan_metrics['r2'] improvement = (opt_r2 - kan_r2) / (1 - kan_r2) * 100 if kan_r2 != 1 else 0 print(f"{'R²':<10} {kan_r2:<15.4f} {opt_r2:<15.4f} {improvement:<15.2f}%") # 训练时间 if 'training_time' in kan_metrics and 'training_time' in optimized_kan_metrics: kan_time = kan_metrics['training_time'] opt_time = optimized_kan_metrics['training_time'] time_diff = (opt_time - kan_time) / kan_time * 100 if kan_time != 0 else 0 print(f"{'时间(秒)':<10} {kan_time:<15.2f} {opt_time:<15.2f} {time_diff:<15.2f}%") return comparison def list_available_models(self, product_id=None, store_id=None, training_mode=None): """ 列出可用的已训练模型 - 支持多店铺模型 参数: product_id: 产品ID,如果为None则列出所有模型 store_id: 店铺ID,用于筛选店铺专属模型 training_mode: 训练模式筛选 ('product', 'store', 'global') 返回: 可用模型列表 """ if not os.path.exists(self.model_dir): print(f"模型目录 {self.model_dir} 不存在") return [] model_files = os.listdir(self.model_dir) models = [] for file in model_files: if file.endswith('.pth'): try: # 解析模型文件名 model_info = self._parse_model_filename(file) if model_info: # 应用过滤条件 if product_id and model_info.get('product_id') != product_id: continue if store_id and model_info.get('store_id') != store_id: continue if training_mode and model_info.get('training_mode') != training_mode: continue model_info['file_name'] = file model_info['file_path'] = os.path.join(self.model_dir, file) models.append(model_info) except Exception as e: print(f"解析模型文件名失败: {file}, 错误: {e}") continue return models def _parse_model_filename(self, filename): """ 解析模型文件名,提取模型信息 参数: filename: 模型文件名 返回: dict: 模型信息字典 """ # 移除文件扩展名 name = filename.replace('.pth', '') # 解析新的多店铺模型命名格式 if '_model_product_' in name: parts = name.split('_model_product_') model_type = parts[0] product_part = parts[1] # 检查是否是店铺模型 (格式: model_type_model_product_store_id_product_id) if len(product_part.split('_')) > 1: store_id = product_part.split('_')[0] product_id = '_'.join(product_part.split('_')[1:]) training_mode = 'store' # 检查是否是全局模型 (格式: model_type_model_product_global_product_id_method) elif product_part.startswith('global_'): parts = product_part.split('_') if len(parts) >= 3: product_id = '_'.join(parts[1:-1]) aggregation_method = parts[-1] store_id = None training_mode = 'global' else: product_id = product_part store_id = None training_mode = 'product' else: # 常规产品模型 product_id = product_part store_id = None training_mode = 'product' # 处理优化版KAN模型 if 'optimized' in model_type: model_type = 'optimized_kan' return { 'model_type': model_type, 'product_id': product_id, 'store_id': store_id, 'training_mode': training_mode, 'aggregation_method': aggregation_method if training_mode == 'global' and 'aggregation_method' in locals() else None } # 处理旧格式的向后兼容性 elif "kan_optimized_model" in name: model_type = "optimized_kan" product_id = name.split('_product_')[1] if '_product_' in name else 'unknown' return { 'model_type': model_type, 'product_id': product_id, 'store_id': None, 'training_mode': 'product', 'aggregation_method': None } return None def delete_model(self, product_id, model_type): """ 删除已训练的模型 参数: product_id: 产品ID model_type: 模型类型 返回: 是否成功删除 """ model_suffix = '_optimized' if model_type == 'optimized_kan' else '' model_name = f"{model_type}{model_suffix}_model_product_{product_id}.pth" model_path = os.path.join(self.model_dir, model_name) if os.path.exists(model_path): os.remove(model_path) print(f"已删除模型: {model_path}") return True else: print(f"模型文件 {model_path} 不存在") return False