""" 药店销售预测系统 - 核心预测器类 """ import os import pandas as pd import numpy as np import torch import time import matplotlib.pyplot as plt from datetime import datetime from trainers import ( train_product_model_with_mlstm, train_product_model_with_kan, train_product_model_with_tcn, train_product_model_with_transformer ) from predictors.model_predictor import load_model_and_predict from utils.data_utils import prepare_data, prepare_sequences from analysis.metrics import evaluate_model from core.config import DEVICE, DEFAULT_MODEL_DIR, DEFAULT_DATA_PATH class PharmacyPredictor: """ 药店销售预测系统核心类,用于训练模型和进行预测 """ def __init__(self, data_path=DEFAULT_DATA_PATH, model_dir=DEFAULT_MODEL_DIR): """ 初始化预测器 参数: data_path: 数据文件路径 model_dir: 模型保存目录 """ self.data_path = data_path self.model_dir = model_dir self.device = DEVICE if not os.path.exists(model_dir): os.makedirs(model_dir) print(f"使用设备: {self.device}") if os.path.exists(data_path): self.data = pd.read_excel(data_path) print(f"已加载数据,来源: {data_path}") else: print(f"数据文件 {data_path} 不存在,请先生成数据") self.data = None def train_model(self, product_id, model_type='transformer', epochs=100, batch_size=32, learning_rate=0.001, sequence_length=30, forecast_horizon=7, hidden_size=64, num_layers=2, dropout=0.1, use_optimized=False): """ 训练预测模型 参数: product_id: 产品ID model_type: 模型类型 ('transformer', 'mlstm', 'kan', 'tcn', 'optimized_kan') epochs: 训练轮次 batch_size: 批次大小 learning_rate: 学习率 sequence_length: 输入序列长度 forecast_horizon: 预测天数 hidden_size: 隐藏层大小 num_layers: 层数 dropout: Dropout比例 use_optimized: 是否使用优化版KAN(仅当model_type为'kan'时有效) 返回: metrics: 模型评估指标 """ if self.data is None: print("没有可用的数据,请先加载或生成数据") return None product_data = self.data[self.data['product_id'] == product_id].copy() if product_data.empty: print(f"找不到产品 {product_id} 的数据") return None if model_type == 'transformer': _, metrics = train_product_model_with_transformer(product_id, epochs=epochs, model_dir=self.model_dir) elif model_type == 'mlstm': _, metrics = train_product_model_with_mlstm(product_id, epochs=epochs, model_dir=self.model_dir) elif model_type == 'kan': _, metrics = train_product_model_with_kan(product_id, epochs=epochs, use_optimized=use_optimized, model_dir=self.model_dir) elif model_type == 'optimized_kan': _, metrics = train_product_model_with_kan(product_id, epochs=epochs, use_optimized=True, model_dir=self.model_dir) elif model_type == 'tcn': _, metrics = train_product_model_with_tcn(product_id, epochs=epochs, model_dir=self.model_dir) else: print(f"不支持的模型类型: {model_type}") return None return metrics def predict(self, product_id, model_type, future_days=7, start_date=None, analyze_result=False): """ 使用已训练的模型进行预测 参数: product_id: 产品ID model_type: 模型类型 future_days: 预测未来天数 start_date: 预测起始日期 analyze_result: 是否分析预测结果 返回: 预测结果和分析(如果analyze_result为True) """ return load_model_and_predict( product_id, model_type, future_days=future_days, start_date=start_date, analyze_result=analyze_result ) def train_optimized_kan_model(self, product_id, epochs=100, batch_size=32, learning_rate=0.001, sequence_length=30, forecast_horizon=7, hidden_size=64, num_layers=2, dropout=0.1): """ 训练优化版KAN模型(便捷方法) 参数与train_model相同,但固定model_type为'kan'且use_optimized为True """ return self.train_model( product_id=product_id, model_type='kan', epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, sequence_length=sequence_length, forecast_horizon=forecast_horizon, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, use_optimized=True ) def compare_kan_models(self, product_id, epochs=100, batch_size=32, learning_rate=0.001, sequence_length=30, forecast_horizon=7, hidden_size=64, num_layers=2, dropout=0.1): """ 比较原始KAN和优化版KAN模型性能 参数与train_model相同 返回: 比较结果字典 """ print(f"开始比较产品 {product_id} 的原始KAN和优化版KAN模型性能...") # 训练原始KAN模型 print("\n训练原始KAN模型...") kan_metrics = self.train_model( product_id=product_id, model_type='kan', epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, sequence_length=sequence_length, forecast_horizon=forecast_horizon, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, use_optimized=False ) # 训练优化版KAN模型 print("\n训练优化版KAN模型...") optimized_kan_metrics = self.train_model( product_id=product_id, model_type='kan', epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, sequence_length=sequence_length, forecast_horizon=forecast_horizon, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, use_optimized=True ) # 比较结果 comparison = { 'kan': kan_metrics, 'optimized_kan': optimized_kan_metrics } # 打印比较结果 print("\n模型性能比较:") print(f"{'指标':<10} {'原始KAN':<15} {'优化版KAN':<15} {'改进百分比':<15}") print("-" * 55) for metric in ['mse', 'rmse', 'mae', 'mape']: if metric in kan_metrics and metric in optimized_kan_metrics: kan_value = kan_metrics[metric] opt_value = optimized_kan_metrics[metric] improvement = (kan_value - opt_value) / kan_value * 100 if kan_value != 0 else 0 print(f"{metric.upper():<10} {kan_value:<15.4f} {opt_value:<15.4f} {improvement:<15.2f}%") # R²值越高越好,所以计算改进的方式不同 if 'r2' in kan_metrics and 'r2' in optimized_kan_metrics: kan_r2 = kan_metrics['r2'] opt_r2 = optimized_kan_metrics['r2'] improvement = (opt_r2 - kan_r2) / (1 - kan_r2) * 100 if kan_r2 != 1 else 0 print(f"{'R²':<10} {kan_r2:<15.4f} {opt_r2:<15.4f} {improvement:<15.2f}%") # 训练时间 if 'training_time' in kan_metrics and 'training_time' in optimized_kan_metrics: kan_time = kan_metrics['training_time'] opt_time = optimized_kan_metrics['training_time'] time_diff = (opt_time - kan_time) / kan_time * 100 if kan_time != 0 else 0 print(f"{'时间(秒)':<10} {kan_time:<15.2f} {opt_time:<15.2f} {time_diff:<15.2f}%") return comparison def list_available_models(self, product_id=None): """ 列出可用的已训练模型 参数: product_id: 产品ID,如果为None则列出所有模型 返回: 可用模型列表 """ if not os.path.exists(self.model_dir): print(f"模型目录 {self.model_dir} 不存在") return [] model_files = os.listdir(self.model_dir) if product_id: model_files = [f for f in model_files if f"product_{product_id}" in f] models = [] for file in model_files: if file.endswith('.pth'): # 处理不同的模型文件命名格式 if "kan_optimized_model" in file: model_type = "optimized_kan" product_id = file.split('_product_')[1].split('.pth')[0] elif "_optimized_model" in file: model_type = "optimized_kan" product_id = file.split('_product_')[1].split('.pth')[0] else: model_type = file.split('_model_product_')[0] product_id = file.split('_product_')[1].split('.pth')[0] models.append({ 'model_type': model_type, 'product_id': product_id, 'file_name': file, 'file_path': os.path.join(self.model_dir, file) }) return models def delete_model(self, product_id, model_type): """ 删除已训练的模型 参数: product_id: 产品ID model_type: 模型类型 返回: 是否成功删除 """ model_suffix = '_optimized' if model_type == 'optimized_kan' else '' model_name = f"{model_type}{model_suffix}_model_product_{product_id}.pth" model_path = os.path.join(self.model_dir, model_name) if os.path.exists(model_path): os.remove(model_path) print(f"已删除模型: {model_path}") return True else: print(f"模型文件 {model_path} 不存在") return False