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Abstract
Time series data, characterized by its intrin-
sic long and short-range dependencies, poses a
unique challenge across analytical applications.
While Transformer-based models excel at cap-
turing long-range dependencies, they face limita-
tions in noise sensitivity, computational efficiency,
and overfitting with smaller datasets. In response,
we introduce a novel Time Series Lightweight
Adaptive Network (TSLANet), as a universal
convolutional model for diverse time series tasks.
Specifically, we propose an Adaptive Spectral
Block, harnessing Fourier analysis to enhance
feature representation and to capture both long-
term and short-term interactions while mitigat-
ing noise via adaptive thresholding. Additionally,
we introduce an Interactive Convolution Block
and leverage self-supervised learning to refine
the capacity of TSLANet for decoding complex
temporal patterns and improve its robustness on
different datasets. Our comprehensive experi-
ments demonstrate that TSLANet outperforms
state-of-the-art models in various tasks spanning
classification, forecasting, and anomaly detection,
showcasing its resilience and adaptability across
a spectrum of noise levels and data sizes. The
code is available at https://github.com/
emadeldeen24/TSLANet.

1. Introduction
Time series data, known for its sequential nature and tempo-
ral dependencies, is ubiquitous across numerous domains,
including finance, healthcare, and environmental monitor-
ing. Recently, the Transformer model (Vaswani et al., 2017),
originally renowned for its breakthroughs in natural lan-
guage processing, has been adapted as a potent tool for
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Figure 1: A comparison between CNN and Transformer-
based architectures for classification and forecasting tasks.
Classification results are the average over 10 UEA datasets
(Wu et al., 2023), while forecasting results are the average
MSE results on lengths {96, 192, 336, 720}.

analyzing time series data. This was motivated by its abil-
ity to capture long-range dependencies and interactions
within time series data, showing proficiency in forecasting
tasks (Wu et al., 2021b; Zhou et al., 2022; Liu et al., 2024).
Despite the initial success of Transformers in time series
forecasting, they encounter hurdles when deployed across
diverse time series tasks, particularly those with smaller
datasets. This can be attributed to its large parameter size,
which may lead to overfitting and computational inefficiency
problems (Wen et al., 2023). In addition, their attention
mechanism often struggles with the inherent noise and re-
dundancy in time series data (Li et al., 2022). Moreover, re-
cent works have questioned their adaptability, as highlighted
by (Zeng et al., 2023; Li et al., 2023). They observed that the
self-attention within Transformers is inherently permutation-
invariant, which compromises the preservation of temporal
information. Their experiments showed that a single linear
layer surprisingly outperforms the complex Transformer
architectures for time series forecasting. However, while
such linear models can perform well for small, clean data,
they may not be able to handle complex, noisy time series.

In this work, we pivot from the prevalent focus on Multi-
Layer Perceptrons (MLPs) and Transformers to tackle the
potential of convolutional operations for time series analysis.
Convolutional Neural Networks (CNNs) have traditionally
excelled in capturing short-term patterns within time series
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due to their local receptive fields, which serve as a strength
in classification tasks. Indeed, as illustrated in Figure 1, a
straightforward 3-layer CNN network demonstrates supe-
rior performance in classification compared to state-of-the-
art Transformer-based architectures. Yet, our experiment
showed that the efficacy of CNNs in forecasting varies with
the data frequency. For instance, the CNN shows compet-
itive performance to these Transformer-based models on
the Weather dataset featuring a short 10-minute frequency
but struggles with the longer hourly ETTh1 dataset, indicat-
ing a difficulty with less frequent temporal changes. This
discrepancy highlights a critical question: How can we en-
hance CNNs to extend their robust performance across a
wider spectrum of time series tasks? It becomes obvious
that expanding the capabilities of CNNs can be achieved by
learning both short-term and long-term dependencies within
time series data.

To this end, we introduce Time Series Lightweight Adaptive
Network (TSLANet), a universal architecture for various
time series tasks. TSLANet inherits the multi-block design
of the Transformer to allow scalability. However, we re-
place the computationally expensive self-attention with a
lightweight Adaptive Spectral Block (ASB) featuring two
key objectives. Firstly, ASB aims to encompass the entire
frequency spectrum, thereby adeptly capturing both long-
term and short-term interactions within the data. This is
achieved via Fourier-based multiplications by global and
local filters, akin to circular convolutions. Secondly, ASB se-
lectively attenuates high frequencies via an adaptive thresh-
olding approach, a strategy aimed at minimizing noise and
enhancing the clarity of the signal. In addition, we further
advance our model by replacing the standard feed-forward
network with an Interactive Convolutional Block, where
CNNs with different kernel sizes control each other to en-
rich the ability of the model to capture and interpret complex
temporal patterns. Finally, we employ a per-dataset self-
supervised pretraining to enhance the model capabilities,
especially on large datasets.

The proposed model is lightweight and enjoys the
O(N logN) complexity of the Fast Fourier Transform
(FFT) operations, demonstrating superior efficiency and
speed compared to self-attention (see Section 5.4). A
summary comparison against CNN-based and Transformer-
based models is also provided in Table 1. The contributions
of this paper can be summarized as follows:

• We propose a universal lightweight model (TSLANet),
designed to adapt seamlessly to a myriad of time series
tasks. Through computationally efficient convolution
operations, TSLANet learns both long- and short-term
relationships within the data.

• We propose an Adaptive Spectral Block, which lever-
ages the power of Fourier transform alongside global

Table 1: Comparison to different methods. ‘Local Depen-
dencies’ means the efficiency in capturing local features.

Method Feature Extraction Long-range
Dependencies

Local
Dependencies

Parameter
Efficiency

CNN Localized Convolution ✗ ✓ ✓
Transformer Self-Attention ✓ ✗ ✗
TSLANet Adaptive Spectral Convolution ✓ ✓ ✓

and local filters to cover the whole frequency spectrum,
while adaptively removing high frequencies that tend
to introduce noises. In addition, we propose an Inter-
active Convolution Block to learn intricate spatial and
temporal features within data.

• TSLANet demonstrates superior performance against
different state-of-the-art methods across various time
series tasks.

2. Related Works
Transformer-based Networks. Since the advance of the
Transformer (Vaswani et al., 2017) for natural language
processing, numerous works have adopted it for time series
analysis. For example, (Wu et al., 2021b; Zhou et al., 2022;
Li et al., 2021; Kitaev et al., 2020; Zhang & Yan, 2023) have
showcased the Transformer capability to model interactions
within time series data, utilizing that for the forecasting task.
In addition, Transformers with special design showed good
performance in anomaly detection task (Xu et al., 2022).

Yet, the efficacy of Transformers for time series has been
contested. For instance, Zeng et al. (2023) argue that the
permutation-invariance property in Transformers may lead
to the loss of temporal information in time series. Following
that, other MLP-based architectures showed efficacy in the
time series forecasting task (Li et al., 2023; Ekambaram
et al., 2023). Furthermore, Transformers demand extensive
computational resources in general, and they are prone to
overfitting when trained on smaller datasets (Wen et al.,
2023).

Convolution-based Networks. CNNs have showcased
their efficacy in time series analysis, particularly shining in
classification tasks due to their adeptness at learning local
patterns (Dempster et al., 2020). CNNs also serve as the
backbone for several time series representation learning
methods, including TS-TCC (Eldele et al., 2021), TS2VEC
(Yue et al., 2022), and MHCCL (Meng et al., 2023).

Despite their promise, CNNs often face challenges in fore-
casting and anomaly detection, primarily due to their lim-
ited ability to capture long-range dependencies. Therefore,
recent works attempt to enhance CNN capabilities in dif-
ferent ways. For instance, T-WaveNet (LIU et al., 2022)
leverages frequency spectrum energy analysis for effective
signal decomposition, SCINet (Liu et al., 2022) adopts a
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Figure 2: The structure of our proposed TSLANet. The input time series is split into patches, and positional embeddings
are added. Next, the output embeddings pass through TSLANet layers, where each layer consists of two main components.
The first is the Adaptive Spectral Block, which leverages frequency domain representations for robust feature extraction and
employs adaptive thresholding to mitigate noise. The second is the Interactive Convolution Block, which captures complex
temporal patterns through convolutional operations.

recursive downsample-convolve-interact strategy to model
complex temporal dynamics, and WFTNet (Liu et al., 2023)
employs a combination of Fourier and wavelet transforms
for a thorough temporal-frequency analysis. Additionally,
TCE (Zhang et al., 2023) targets the improvement of 1D-
CNNs by addressing the disturbing convolution for better
low-frequency component focus, and BTSF (Yang & Hong,
2022) introduces a bilinear temporal-spectral fusion tech-
nique for unsupervised learning, emphasizing the impor-
tance of maintaining the global context of time series data.

A noteworthy attempt to leverage CNNs for multiple time
series tasks is the TimesNet model (Wu et al., 2023), which
capitalizes on multi-periodicity to merge intraperiod and
interperiod variations within a 2D space, enhancing the
representation of temporal patterns. However, TimesNet
may not fully address the challenges presented by non-
stationary datasets lacking clear periodicity. Some recent
works have explored combining CNNs with Transformers to
harness both their strengths (Li et al., 2022; Wu et al., 2021a;
D’Ascoli et al., 2021), though such hybrid approaches re-
main underexplored in time series analysis compared to
their applications in computer vision.

Our work takes a distinct path by proposing a universal
convolutional-based architecture, adept at handling various
time series tasks through adaptive spectral feature extrac-

tion. This approach not only utilizes the strong local feature
learning capabilities of CNNs but also efficiently captures
global temporal patterns, offering a balanced solution for
both local and long-range dependencies in time series data.

3. Method
3.1. Preliminaries: Discrete Fourier Transform

We first explore the Discrete Fourier Transform (DFT) as
it is a cornerstone in our framework. Consider a series of
N complex numbers x[n], where 0 ≤ n ≤ N − 1. The
1D DFT transforms this series into a frequency domain
representation:

X[k] =

N−1∑
n=0

x[n]e−j(2π/N)kn :=

N−1∑
n=0

x[n]W kn
N , (1)

where j denotes the imaginary unit, with WN = e−j(2π/N).
This formulation is derived from the continuous Fourier
transform by discretizing in both time and frequency do-
mains. The spectrum of the sequence x[n] at frequency
ωk = 2πk/N is represented by X[k], which is periodic
with an interval of length N , thus only the first N points are
considered.

Due to the bijective nature of DFT, the original sequence
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x[n] is retrievable via the Inverse DFT (IDFT):

x[n] =
1

N

N−1∑
k=0

X[k]ej(2π/N)kn. (2)

For real-valued x[n], DFT exhibits conjugate symmetry,
i.e., X[N − k] = X∗[k]. This symmetry is pivotal, as
performing IDFT on a conjugate symmetric X[k] results in
a real discrete signal. Half of the DFT spectrum, specifically
X[k] : 0 ≤ k ≤ ⌈N/2⌉, sufficiently describes the frequency
characteristics of x[n].

The choice of DFT in TSLANet is motivated by two factors:
its discrete nature aligns well with digital processing and
the existence of efficient computation methods. The Fast
Fourier Transform (FFT), leveraging the symmetry and pe-
riodicity of W kn

N , optimizes DFT computation from O(N2)
to O(N logN). The IDFT, paralleling DFT’s form, benefits
similarly from the Inverse FFT (IFFT).

3.2. Overall Architecture

Our model integrates two novel components, i.e., the Adap-
tive Spectral Block (ASB) and the Interactive Convolution
Block (ICB), as depicted in Figure 2. These two components
form a single layer that could be extended to multiple layers.
The ASB employs Fourier analysis to transform time series
data into the frequency domain, in which we apply adaptive
thresholding to attenuate high-frequency noise and highlight
relevant spectral features. After processing, the IFFT recon-
structs the time-domain features, now with reduced noise
and enhanced representations. The ICB is a streamlined
convolutional block that interactively refines features using
different kernel sizes, improving adaptability to temporal
dynamics in time series. Together, these components form a
cohesive structure that balances local and global temporal
feature extraction for time series analysis.

3.3. Embedding Layer

Given an input time series S, with each signal S ∈ RC×L

having C channels and a sequence length L. First, the sig-
nal S is divided into a set of M patches {P1, P2, ..., PM},
where each patch Pi captures a segment of S. The dimen-
sion of each patch is determined by the predefined patch
size p, such that each patch Pi ∈ RC×p.

Each patch is then mapped into another dimension p′, i.e.,
Pi → P ′

i ∈ RC×p′
. Next, the positional embeddings are

added to each patch to retain the temporal ordering dis-
rupted during the segmentation process. The positional
embedding for the i-th patch is denoted as Ei, a vector that
aligns dimensionally with the patch. The augmented patch
results from adding both inputs, i.e., SPEi

= P ′
i +Ei, and

SPE = {SPE1 , SPE2 , . . . SPEM
}. Notably, the positional

embeddings are learnable parameters, allowing the model

to capture the temporal relationships within the time series
data effectively.

3.4. Adaptive Spectral Block

We propose the Adaptive Spectral Block (ASB) that em-
ploys the Fourier-domain processing, as inspired by (Rao
et al., 2021). This block aims to learn spatial informa-
tion with the global circular convolution operations. More-
over, it provides adaptive local filters to isolate noisy high-
frequency components for any time series data.

Fast Fourier Transformations. Given a discrete time
series x[n], we obtain its frequency domain representation
X[k], by performing FFT along the spatial dimensions as
in Equation 1. Similarly, given SPE , its representation is
calculated as:

F = F [SPE ] ∈ CC×L′
, (3)

where F [·] denotes the 1D FFT operation, and L′ is the trans-
formed sequence length in the frequency domain, which
may differ from L depending on the FFT implementation
and the nature of the time series data. Each channel of
the time series is independently transformed, resulting in
a comprehensive frequency domain representation F that
encapsulates the spectral characteristics of the original time
series across all channels.

Adaptive Removal of High-Frequency Noise. High-
frequency components often represent rapid fluctuations
that deviate from the underlying trend or signal of interest,
making them appear more random and difficult to interpret
(Rhif et al., 2019). Therefore, we propose an adaptive lo-
cal filter that allows the model to dynamically adjust the
level of filtering according to the dataset characteristics and
remove these high-frequency noisy components. This is
crucial when dealing with non-stationary data, where the
frequency spectrum may change over time. The proposed
filter adaptively sets the appropriate frequency threshold for
each specific time series data.

Given the frequency domain representation F obtained from
the FFT operation, we first calculate the power spectrum of
F , which helps in identifying dominant frequency compo-
nents. The power spectrum P is computed as the square
of the magnitude of the frequency components: P = |F |2,
which gives us a measure of the strength of different fre-
quencies in the time series data.

The key to effective noise reduction lies in adaptively filter-
ing high-frequency components from the power spectrum
P . We achieve this with a trainable threshold θ, which ad-
justs based on the spectral characteristics of the data. This
threshold θ is set as a learnable parameter optimized during
training through backpropagation, specifically ∂L

∂θ , enabling
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θ to discern between essential signal frequencies and noise.
We formulate this adaptive thresholding as follows:

Ffiltered = F ⊙ (P > θ), (4)

where ⊙ represents element-wise multiplication, and (P >
θ) is a binary mask where frequencies with power above the
threshold θ are retained, and others are filtered out.

The adaptability of the threshold θ ensures that the ASB
can efficiently remove high frequencies while preserving
crucial information. By adaptively selecting the frequency
threshold, the ASB tailors its filtering process to each spe-
cific time series dataset, enhancing the overall effectiveness
of the model in handling a wide range of data scenarios.

Learnable Filters. After adaptively filtering the frequency
domain data, the model employs two sets of learnable filters;
a global filter to learn from the original frequency domain
data F and a local filter to learn from the adaptively filtered
data Ffiltered. Let WG and WL be the learnable global and
local filters, respectively. The application of these filters is
represented as:

FG = WG ⊙ F , (5)
FL = WL ⊙ Ffiltered. (6)

Next, we integrate these filtered features to capture a com-
prehensive spectral detail, i.e., Fintegrated = FG + FL.

Notably, the multiplication operations in Equations 5 and
6 are equivalent to the circular convolution process (see
Appendix A). Circular convolution, with its larger recep-
tive field over the entire sequence, is particularly adept at
capturing periodic patterns in time series data.

Inverse Fourier Transform. To convert the integrated
frequency domain data back to the time domain, we apply
the Inverse Fast Fourier Transform (IFFT). The resulting
time-domain signal S′ is given by:

S′ = F−1[Fintegrated] ∈ RC×p′
. (7)

The IFFT ensures that the enhanced features align with the
original data structure of the input time series. The full
operation of the ASB is described in Algorithm 1 in the
Appendix.

3.5. Interactive Convolution Block

After enhancing feature representation by the ASB, we pro-
pose the Interactive Convolution Block (ICB), which utilizes
a dual-layer convolutional structure, as shown in Figure 2.
The design of the ICB includes parallel convolutions with
different kernel sizes to capture local features and longer-
range dependencies. Specifically, the first convolutional

layer is designed to capture fine-grained, localized patterns
in the data with a smaller kernel. In contrast, the second
layer aims to identify broader, longer-range dependencies
with a larger kernel. We design the ICB such that the output
of each layer modulates the feature extraction of the other.
The element-wise multiplication encourages interactions
between features extracted at different scales, potentially
leading to better modeling of complex relationships.

Given the output of the IFFT operation S′, it serves as the
input to the ICB. The process within the ICB is as follows:

A1 = ϕ(Conv1(S′))⊙ Conv2(S′), (8)

A2 = ϕ(Conv2(S′))⊙ Conv1(S′), (9)

where Conv1(·) and Conv2(·) are two 1D-convolutional
layers and ϕ is the GELU activation function.

The activated features are then added and passed through a
final convolutional layer Conv3(·):

OICB = Conv3(A1 +A2). (10)

The output OICB represents the enhanced features ready for
the final layer in the network, represented by a customizable
linear layer according to the task.

3.6. Self-Supervised Pretraining

Expanding the capabilities of TSLANet, we incorporate a
phase of self-supervised pretraining, which has garnered
significant attention for its efficacy in learning high-level
representations from unlabeled data (Nie et al., 2023). Draw-
ing inspiration from methodologies applied in natural lan-
guage processing and computer vision, we adopt a masked
autoencoder paradigm for time series data (He et al., 2022).

Our implementation involves selective masking of input
sequence patches, followed by training TSLANet to recon-
struct these masked segments accurately. The masked data
then serves as the training input, compelling the model to
learn and infer the underlying patterns and dependencies in
the data. Unlike methods that apply masking at individual
time steps, our approach focuses on larger patches. This
design choice avoids simplistic interpolation from adjacent
time points and encourages the model to understand the
entire sequence deeply. The reconstruction of these patches
is achieved by optimizing the mean squared error (MSE)
loss function.

4. Experiments
In this section, we evaluate the efficacy of TSLANet on
time series classification, forecasting, and anomaly detection
tasks. We show that our TSLANet can serve as a foundation
model with competitive performance on these tasks. The
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Table 2: Classification results in different datasets. Results are averaged across each subset of datasets. Results are in terms
of accuracy (as %). Blue: best results, Purple: second best. Full results are listed in Tables 10, 11, and 12 in the Appendix.

Methods TSLANet GPT4TS TimesNet ROCKET Crossformer PatchTST MLP TS-TCC TS2VEC
(Ours) (2023) (2023) (2020) (2023) (2023) (2023) (2021) (2022)

UCR repository (85 datasets) 83.18 61.58 65.27 81.42 73.47 71.84 69.68 75.07 81.42
UEA repository (26 datasets) 72.73 58.51 66.55 68.79 66.84 69.13 65.81 69.38 59.62

Biomedical signals (2 datasets) 90.24 87.04 87.10 87.20 70.82 83.87 70.63 92.25 86.31
Human activity recognition (3 datasets) 97.46 92.71 91.51 96.44 77.55 94.87 56.69 97.16 95.70

Average 85.90 74.96 77.61 83.46 72.17 79.93 65.70 83.55 80.76

Table 3: Multivariate forecasting results with prediction lengths ∈ {96, 192, 336, 720}. Results are averaged from all
prediction lengths. Avg means further averaged by subsets. Blue: best results, Purple: second best. Full results are listed in
Table 13 in the Appendix.

Models TSLANet Time-LLM iTransformer PatchTST Crossformer FEDformer Autoformer RLinear Dlinear TimesNet GPT4TS SCINet
(Ours) (2024) (2024) (2023) (2023) (2022) (2021b) (2023) (2023) (2023) (2023) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.165 0.257 0.158 0.252 0.178 0.270 0.167 0.259 0.244 0.334 0.214 0.327 0.227 0.338 0.219 0.298 0.166 0.263 0.192 0.295 0.167 0.263 0.268 0.365

ETT (Avg) 0.337 0.377 0.330 0.372 0.383 0.399 0.347 0.378 0.685 0.578 0.408 0.428 0.465 0.459 0.380 0.392 0.369 0.398 0.391 0.404 0.350 0.382 0.689 0.597

Exchange 0.369 0.404 - - 0.360 0.403 0.367 0.404 0.940 0.707 0.519 0.429 0.613 0.539 0.378 0.417 0.297 0.378 0.416 0.443 0.370 0.406 0.750 0.626

Traffic 0.396 0.271 0.388 0.264 0.428 0.282 0.420 0.277 0.550 0.304 0.610 0.376 0.628 0.379 0.626 0.378 0.433 0.295 0.620 0.336 0.414 0.294 0.804 0.509

Weather 0.228 0.264 0.225 0.257 0.258 0.279 0.238 0.268 0.259 0.315 0.309 0.360 0.338 0.382 0.272 0.291 0.246 0.300 0.259 0.287 0.237 0.270 0.292 0.363

detailed experimental setup is described in Section D, while
the detailed experimental results are presented in Section F
in the Appendix.

4.1. Classification

Datasets. We examine the classification ability of
TSLANet on a total of 116 datasets, including 85 uni-
variate UCR datasets (Dau et al., 2019), 26 multi-variate
UEA datasets (Bagnall et al., 2018). We also include another
5 datasets, i.e., two biomedical datasets, namely, Sleep-EDF
dataset (Goldberger et al., 2000) for EEG-based sleep stage
classification and MIT-BIH dataset (Moody & Mark, 2001)
for ECG-based arrhythmia classification, and three human
activity recognition (HAR) datasets, namely, UCIHAR (An-
guita et al., 2013), WISDM (Kwapisz et al., 2011), and
HHAR (Stisen et al., 2015). These datasets have different
characteristics and they span a wide range of time series
applications. More details about these datasets are included
in Appendix E.2.

Baselines and Experimental Settings. We select eight
state-of-the-art baselines, i.e., GPT4TS (Zhou et al.,
2023), TimesNet (Wu et al., 2023), ROCKET (Demp-
ster et al., 2020), TS-TCC (Eldele et al., 2021), TS2Vec
(Yue et al., 2022), Crossformer (Zhang & Yan, 2023) and
PatchTST (Nie et al., 2023) as they showed the best classifi-
cation accuracy over other Transformer-based architectures.
Last, we experiment with a simple single-layer MLP.

Results. Table 2 reports the classification results, where
our proposed TSLANet demonstrates superior performance
over state-of-the-art baselines. Notably, convolution-based
methods, including ROCKET, TS-TCC, and our approach,
outperform Transformer-based models, highlighting their
superiority in classification tasks. For example, in the
UCR repository, TSLANet achieves an impressive accu-
racy of 83.18%, outperforming other models including the
ROCKET, which scores 81.42%. The UEA repository re-
sults further reinforce our efficacy, with a 72.73% accuracy,
compared to the next best model, PatchTST, at 69.38%.
In more specialized datasets like biomedical signals and
HAR, our advantage is even more pronounced, achieving
an overall accuracy of 90.24% and 97.46%, respectively.
These results highlight the robustness and adaptability of
TSLANet in diverse time series contexts.

In our comparative analysis, Transformer models generally
face challenges across various datasets, reflecting inherent
limitations in handling time series data. MLP models per-
form well on simpler UCR datasets but falter in complex,
noisy environments. TimesNet excels in datasets rich in
frequency information but struggles with simpler ones. Last,
the GPT4TS model shows promise in larger datasets due to
the high capacity of the GPT model, yet underperforms in
smaller datasets due to probable overfitting.

4.2. Forecasting

Datasets. To assess the efficacy of TSLANet in forecast-
ing, we conduct comprehensive evaluations on eight bench-
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Table 4: Anomaly detection task. We calculate the F1-score (as %) for each dataset. ∗. in the Transformers indicates the
name of ∗former. Blue: best, Purple: second best. Table 14 in the Appendix shows the full results.

Methods TSLANet GPT4TS TimesNet PatchTST ETS. FED. LightTS DLinear Stationary Auto. Pyra. Anomaly. In. Re. LogTrans. Trans.(Ours)

SMD 87.91 86.89 84.61 84.62 83.13 85.08 82.53 77.10 84.72 85.11 83.04 85.49 81.65 75.32 76.21 79.56
MSL 83.32 82.45 81.84 78.70 85.03 78.57 78.95 84.88 77.50 79.05 84.86 83.31 84.06 84.40 79.57 78.68

SMAP 75.96 72.88 69.39 68.82 69.50 70.76 69.21 69.26 71.09 71.12 71.09 71.18 69.92 70.40 69.97 69.70
SWaT 92.80 94.23 93.02 85.72 84.91 93.19 93.33 87.52 79.88 92.74 91.78 83.10 81.43 82.80 80.52 80.37
PSM 97.73 97.13 97.34 96.08 91.76 97.23 97.15 93.55 97.29 93.29 82.08 79.40 77.10 73.61 76.74 76.07

Average 87.54 86.72 85.24 82.79 82.87 84.97 84.23 82.46 82.08 84.26 82.57 80.50 78.83 77.31 76.60 76.88

mark datasets. i.e., Electricity (ECL) featuring electric-
ity consumption data, four ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2) that encompass a range of scenarios in en-
ergy transfer technology, Exchange that encompasses fluctu-
ating currency exchange rates, Traffic that comprises traffic
flow information, and Weather that offers insights into vari-
ous meteorological variables over time. We include more
details about their characteristics in Appendix E.3.

Baselines and Experimental Settings. We compare
TSLANet against a variety of state-of-the-art baselines.
For Transformer architectures, we compare against iTrans-
former (Liu et al., 2024), PatchTST, Crossformer, FED-
former (Zhou et al., 2022), and Autoformer (Wu et al.,
2021b). For MLP-based models, we compare against RLin-
ear (Li et al., 2023) and DLinear (Zeng et al., 2023) models.
For general-purpose time series models, we compare our
model against TimesNet and GPT4TS. For a convolutional-
based forecasting model, we compare with SCINet (Liu
et al., 2022). Last, we include Time-LLM (Jin et al., 2024),
which is based on Large-Language Models. Similar to
(Zhou et al., 2023) settings, we set the look-back window to
336 for the ETT dataset, 96 for Exchange, 512 for the Traf-
fic and Weather datasets, and 96 for the ECL dataset. We
also incorporate the data normalization block, and reverse
instance norm in the forecasting task (Kim et al., 2021).
For the baselines, we report the best results in their original
works if they are consistent with our settings, otherwise, we
re-run their codes again.

Results. In our forecasting experiments presented in Ta-
ble 3, we notice the superiority of Time-LLM due to its re-
liance on the large Llama-7B model (Touvron et al., 2023),
which enables it to capture complex patterns and depen-
dencies in data. Other than Time-LLM, TSLANet consis-
tently outperforms baseline models across various datasets.
Specifically, it achieves the second lowest MSE and MAE in
seven out of eight datasets, showing 3% and 3.8% MSE im-
provement over the state-of-the-art PatchTST in ETT(avg)
and Weather datasets respectively. This indicates the ef-
fectiveness of our model in handling datasets with diverse
characteristics and complexities. In addition, it shows the
effect of the added capability of the ASB module in learning

long-range dependencies.

The results also suggest the superiority of our model
over specialized Transformer-based architectures and MLP-
based models. These models, e.g., iTransformer and Dlinear
show competitive performance in certain datasets but fall
behind in others. In addition, GPT4TS shows the power
of the GPT models in the forecasting task by scoring the
second-best performance in some datasets.

While Time-LLM offers slightly better performance, its
computational cost is significantly higher than TSLANet.
To illustrate, TSLANet demonstrates a nearly equivalent
performance to Time-LLM on the ETTh1 dataset with
an MSE of 0.413 compared to Time-LLM’s 0.408, yet
TSLANet does so with significantly lower computational
cost of 6.9e+10 FLOPS against 7.3e+12 for Time-LLM.
This showcases the effective balance between performance
and computational efficiency in our TSLANet.

4.3. Anomaly Detection

Datasets. In this study, we focus on detecting anomalies
in unsupervised time series data. We use five benchmark
datasets for our experiments: SMD (Su et al., 2019) for
server monitoring, MSL (Hundman et al., 2018) for space
telemetry, SMAP (Hundman et al., 2018) for earth observa-
tions, SWaT (Mathur & Tippenhauer, 2016) for water treat-
ment security, and PSM (Abdulaal et al., 2021) for industrial
pump sensors. We discuss their details in Appendix E.4.

Baselines and Experimental Settings. We followed the
same experimental settings and adopted the same baselines
in GPT4TS (Zhou et al., 2023). These are GPT4TS, Times-
Net, PatchTST, ETSformer (Woo et al., 2022), FEDformer,
LightTS (Zhang et al., 2022), DLinear, Stationary (Liu et al.,
2022), Autoformer, Pyraformer (Liu et al., 2021), Anoma-
lyformer (Xu et al., 2022), Informer, Reformer, LogTrans-
former (Li et al., 2019), and the vanilla Transformer. For
data preparation, we segmented each dataset with a slid-
ing window, following (Xu et al., 2022). We adopted the
reconstruction error as our evaluation metric, common in
unsupervised learning for spotting anomalies.
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Table 5: Ablation study to the effect of each component.
ASB-L refers to the local filters in the ASB. UWaveGL is
the UWaveGestureLibrary dataset from the UEA repository.

Variant Classification (ACC %) Forecasting (MSE)
FordA UWaveGL ETTh1 Exchange

w/o ASB 87.3 77.5 0.421 0.380
w/o ASB (L) 92.7 88.9 0.417 0.373
w/o ICB 91.3 86.2 0.419 0.376
w/o pretraining 92.5 90.6 0.415 0.372

TSLANet 93.1 91.3 0.413 0.369

Results. Table 4 presents the results, where TSLANet
performs best in most of the datasets with an overall F1-
score of 87.54%. It outperforms advanced models like FED-
former and Autoformer, especially in the SMD and PSM
datasets with F1-scores of 87.91% and 97.73% respectively.
GPT4TS model follows closely, ranking second with an
overall average of 86.72%. Its high capacity makes it effec-
tive in detecting anomalies, though it slightly trails behind.

Notably, Transformer-based models exhibit lower efficacy
in anomaly detection in general. This could be regarded
to the attention mechanism focusing on dominant normal
points, thus missing rare anomalies. Models that consider
periodicity, like TimesNet and FEDformer, perform well,
indicating the value of periodic analysis in highlighting
unusual patterns.

5. Model Analysis
5.1. Ablation Study

In Table 5, we assess the contribution of the different com-
ponents in our model, where we report the performance of
the model when removing each component individually. No-
tably, removing the Adaptive Spectral Block (i.e., w/o ASB)
yields a notable decline in performance. For classification
tasks on FordA and UWaveGestureLibrary datasets, the ac-
curacy drops to 87.3% and 77.5%, respectively. Similarly,
its absence results in higher MSE values in the forecasting
task of 0.421 and 0.380 for ETTh1 and Exchange datasets.
This underscores the ASB’s critical role in feature extraction
and noise reduction. Similarly, excluding the local adap-
tive part of the ASB (i.e., w/o ASB-L) affects the noisy
datasets more than less noisy ones, highlighting the local
component’s value in handling noise.

The effect of the ICB was less than the ASB, with less
performance degradation in the two tasks. However, its re-
moval shows reduced classification accuracy and increased
forecasting MSE indicating its importance. The role of
pretraining is similarly validated, as its absence slightly
diminishes the model’s performance across both tasks.
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Figure 3: Effectiveness of the Adaptive Filter in noise re-
duction.

5.2. Efficacy of Adaptive Filtering in Noise Reduction

We delve into the effectiveness of the Adaptive Filter in
mitigating noise and enhancing model robustness by ex-
amining Figure 3. Specifically, Figures 3a and 3b present
the performance of TSLANet, both with and without the
Adaptive Filter, against the Transformer model by adding
different Gaussian noise levels to the time series. The per-
formance of the Transformer deteriorates rapidly as noise
increases. In contrast, TSLANet maintains a relatively sta-
ble performance, with the variant using the Adaptive Filter
showing the most resilience to noise. This is particularly
noteworthy at higher noise levels, where the accuracy of the
standard Transformer falls steeply, while TSLANet with
the Adaptive Filter experiences a much less pronounced
decline.

In Figure 3c, we observe the frequency spectra before and
after applying the Adaptive Filter. The left plot shows a
noisy spectrum with high amplitude spikes across various
frequencies. However, after applying the Adaptive Filter,
a markedly cleaner spectrum where the amplitude of noise
spikes is significantly reduced, particularly in the higher
frequency range. This demonstrates the filter’s ability to at-
tenuate unwanted noise while preserving the relevant signal.

5.3. Scaling Efficiency

We compare the scalability of our TSLANet with one of the
best-performing Transformer models in the classification
task, i.e., PatchTST (Nie et al., 2023), by observing their
performance across various dataset sizes and layer counts.
Specifically, we experiment with variable data sizes from
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Figure 4: A comparison between TSLANet vs. PatchTST
in terms of accuracy with varying the number of layers in
both for different data percentages from the uWaveGesture-
LibraryAll dataset.

the uWaveGestureLibraryAll dataset, as shown in Figure 4.
Notably, in smaller data sizes, TSLANet demonstrates a
consistent accuracy level, subtly decreasing as the number of
layers increases. In contrast, the PatchTST shows a marked
decline in accuracy with additional layers, suggesting a
potential overfitting issue or inefficiency in handling limited
data with increased model complexity.

As dataset sizes grow, TSLANet performance remains ro-
bust, showing slight variations in accuracy with more layers.
This stability contrasts with the PatchTST performance,
which tends to decrease notably at higher layer counts. This
trend in PatchTST could be attributed to their inherent de-
sign, which might lead to diminishing returns or optimiza-
tion challenges as the model depth increases. Lastly, we
notice that TSLANet effectively leverages larger dataset
samples, as its performance improves with an increase in
the number of layers, highlighting its capacity to capitalize
on more extensive data for enhanced accuracy.

5.4. Complexity Analysis

We compare the complexity of our TSLANet with Times-
Net and Transformer-based models, e.g., PatchTST, FED-
Former, AutoFormer, Informer, and Reformer in terms of
the number of parameters, FLOPs, and accuracy on the
UEA Heartbeat dataset, as shown in Figure 5. TSLANet
demonstrates superior efficiency and accuracy in time series
analysis, achieving the highest accuracy of 77.56% with the
lowest computational and parameter footprint among the
compared models. It requires 93% fewer FLOPs and 84%
fewer parameters than the PatchTST, yet outperforms it by
over 8% in accuracy. Compared to TimesNet, TSLANet
operates with more than 99% fewer FLOPs and parameters
while still delivering a 3% higher accuracy.

This considerable reduction in computational demand con-
firms the lightweight nature of TSLANet compared to
Transformer-based alternatives, underscoring its capacity to
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Figure 5: TSLANet vs. baselines in terms of the number
of parameters and FLOPS count against the classification
accuracy of the UEA Heartbeat dataset.

make time series analysis more efficient.

6. Conclusions
In this paper, we introduced TSLANet, a novel lightweight
model for time series analysis that revisits the convolution
approach as a potent replacement to Transformers, with
an innovative combination of convolution operations and
adaptive spectral analysis. Our comprehensive experiments
across various datasets in classification, forecasting, and
anomaly detection have demonstrated its superior perfor-
mance over traditional Transformer models, particularly
in its ability to maintain high accuracy levels in noisy
conditions and across different data sizes. Furthermore,
our in-depth layer-wise performance analysis revealed that
TSLANet not only outperforms Transformers in smaller
datasets but also exhibits improved scalability with increas-
ing layers, particularly in larger datasets. TSLANet is a
step towards a foundation model for time series analysis.

Impact Statement
Our proposed work TSLANet aims to advance the field of
Machine Learning by providing a more efficient, scalable,
and robust foundation model for analyzing time series data
across various applications. It has the potential to impact
various sectors, including healthcare, finance, and environ-
mental monitoring, by enhancing forecasting accuracy and
anomaly detection capabilities. Such improvements could
lead to better patient outcomes, more informed financial
decisions, and greater preparedness for natural disasters.
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A. Circular Convolutions
The convolution theorem suggests that the multiplication in the frequency domain is equivalent to the circular convolution
process.

Let x[n] and h[n] be two length N sequences. Their DFTs are X[k] and H[k], respectively. Consider the circular convolution
y[n] = (x⊛ h)[n]. The DFT of y[n] is Y [k].

First, the DFT of the Convolution can be formulated as:

Y [k] =

N−1∑
n=0

(
N−1∑
m=0

x[m] · h[(n−m) mod N ]

)
· e−i2πkn/N

However, if we changed the order of summation, it becomes:

Y [k] =

N−1∑
m=0

x[m] ·
N−1∑
n=0

h[(n−m) mod N ] · e−i2πkn/N

By substituting n−m with r:

Y [k] =

N−1∑
m=0

x[m] · e−i2πkm/N ·
N−1∑
r=0

h[r] · e−i2πkr/N

Therefore, we recognize the DFTs of x[n] and h[n]:

Y [k] =

(
N−1∑
m=0

x[m] · e−i2πkm/N

)
·

(
N−1∑
r=0

h[r] · e−i2πkr/N

)

Y [k] = X[k] ·H[k]

Thus, we have shown that the DFT of the circular convolution of two sequences x[n] and h[n] is the product of their
individual DFTs, i.e., Y [k] = X[k] ·H[k].

B. Frequency Domain Processing Role to Learn Long-Range Dependencies
Fourier transforms, used in our Adaptive Spectral Block (ASB), can learn long-range and short-range dependencies in time
series. The Fourier Transform (FT) of a time series x(t) is given by:

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt

where X(f) represents the signal in the frequency domain, f is the frequency, and t represents time.

The FT decomposes x(t) into its constituent frequencies, where each frequency component represents a pattern in the time
series. Low-frequency components correspond to long-range dependencies (slowly changing trends), and high-frequency
components correspond to short-range dependencies (rapid fluctuations). Let’s consider a simplified model where the ASB
applies a filter H(f) to the Fourier transform X(f) of the input signal, enhancing certain frequencies while attenuating
others:

Y (f) = H(f) ·X(f)

where Y (f) is the output signal in the frequency domain.

The adaptiveness comes from adjusting H(f) based on the data, which can be modeled as a learning process where
H(f) is updated to minimize a loss function L that measures the discrepancy between the model output and the true data
characteristics:

min
H(f)

L(Y (f),True Data)
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Through this process, H(f) learns to emphasize the frequency components that are most relevant for predicting the target,
whether they capture long-range or short-range dependencies.

After filtering in the frequency domain, the inverse Fourier transform (IFT) is applied to convert Y (f) back into the time
domain, yielding the modified signal y(t):

y(t) =

∫ ∞

−∞
Y (f)ej2πftdf

This signal now encapsulates the learned dependencies, ready for further processing or as an input to subsequent model
layers.

C. Algorithm of Adaptive Spectral Block

Algorithm 1 Pseudocode of the Adaptive Spectral Block.

def adaptive_high_freq_mask(x, threshold):
# Calculate energy
energy = torch.abs(x_fft).pow(2).sum(dim=-1)

# Compute the adaptive threshold
threshold = torch.quantile(energy, threshold)

# Identify the dominant frequencies
dominant_freq = normalized_energy > threshold

# Set adaptive mask values
adaptive_mask[dominant_freq] = 1

return adaptive_mask

# Transform input x_in to frequency domain
X_fft = fft(x_in)

# Create an adaptive mask for high-freq. components
freq_mask = adaptive_high_freq_mask(X_fft, threshold)

# Apply adaptive high-frequency mask
X_masked = X_fft * freq_mask

# Apply global and local learnable weights
X_L = X_masked * local_weight
X_G = X_fft * global_weight

# Transform data back into the time domain
x_out = ifft(X_L + X_G)

D. Experimental Setup
D.1. Training Protocol

To train the classification experiments, we optimized TSLANet using AdamW with a learning rate of 1e-3 and a weight
decay of 1e-4, applied during both training and pretraining phases. The experiments ran for 50 epochs for pretraining and
100 epochs for fine-tuning. For the forecasting and anomaly detection experiments, we utilized a learning rate of 1e-4 and a
weight decay of 1e-6, with both phases running for 10 and 20 epochs.

For all experiments, the stride was set to half of the patch size to ensure overlapping windows. Each experiment was repeated
three times, with the average performance reported. TSLANet was implemented using PyTorch and conducted on NVIDIA
RTX A6000 GPUs.

D.2. Objective Functions

For the classification task, we employ a categorical cross-entropy loss function with label smoothing, defined as Lclf =
−
∑C

i=1 y
smooth
i · log(ŷi). Here, ysmooth

i is the true class label in one-hot encoded form adjusted via label smoothing, ŷi is the
predicted probability for each class, and C is the total number of classes. Label smoothing reduces model confidence by
adjusting the true labels with a smoothing parameter ϵ, making the distribution more uniform, where each yi is transformed
to ysmooth

i = (1− ϵ) · yi + ϵ
C .

In forecasting and anomaly detection, we use the Mean Squared Error (MSE) to measure discrepancies between predicted
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values and actual observations, expressed as LMSE = 1
N

∑N
i=1(yi − ŷi)

2. Here, yi represents the actual value at time i, ŷi
denotes the forecasted value, and N is the number of predictions. This MSE loss is also utilized in self-supervised learning
tasks to reconstruct masked patches.

D.3. Evaluation Metrics

Model performance was evaluated using standard metrics appropriate to each task. For classification, we reported accuracy;
for forecasting, Mean Squared Error (MSE) and Mean Absolute Error (MAE) were used; for anomaly detection, the F1-score
was our primary metric due to the imbalanced nature of the datasets.

E. Datasets Details
E.1. Data Preprocessing

For the classification task, the UCR and UEA datasets are already split into train/test splits. A validation set was picked
from each dataset in the training set with a ratio of 80/20. The selection of the hyperparameters was based on the average
results on the validation sets across each collection of datasets, i.e., UCR and UEA. For biomedical and human activity
recognition datasets, which are not split by default, we split the data into a 60/20/20 ratio for train/validation/test splits.
For forecasting and anomaly detection datasets, these are split into a ratio of 70/10/20 following a line of previous works,
towards a fair comparison with these works (Zhou et al., 2022; Kitaev et al., 2020; Li et al., 2021; Wu et al., 2023). All
datasets are normalized during training.

For the self-supervised task, we deploy the unlabeled version of the training set in each dataset for pretraining, then use the
same set again with labels for fine-tuning.

E.2. Classification

In our evaluation, we extensively utilize four categories of datasets:

• UCR datasets: The UCR Time Series Classification Archive is one of the most comprehensive collections of univariate
datasets tailored for time series analysis. This archive encompasses 85 diverse datasets, each presenting unique
challenges and characteristics that span a wide array of domains, from healthcare and finance to environmental
monitoring and beyond. The variety within the UCR archive allows for a robust assessment of TSLANet across
different contexts, showcasing its versatility and performance.

• UEA datasets: We also incorporate datasets from the University of East Anglia (UEA) Time Series Classification
repository, which is renowned for its rich collection of multivariate time series datasets. We were able to preprocess 26
datasets, each offering a multidimensional perspective on time series analysis across various real-world scenarios, such
as human activity recognition, sensor data interpretation, and complex system monitoring. More details about the UCR
and UEA datasets can be found in https://www.timeseriesclassification.com/.

• Biomedical datasets: The biomedical domain presents unique challenges and opportunities for time series analysis. In
this context, we utilized two pivotal datasets for our evaluation: the Sleep-EDF dataset and the MIT-BIH Arrhythmia
dataset.

– Sleep-EDF Dataset: This dataset consists of polysomnography recordings intended for sleep stage classification.
It is part of the PhysioNet database and includes polysomnographic sleep recordings that have been widely used
to analyze sleep patterns and stages. For our analysis, we extracted the brain EEG signals.

– MIT-BIH Arrhythmia Dataset: Another significant dataset from PhysioNet, the MIT-BIH Arrhythmia Dataset, is
composed of electrocardiogram (ECG) recordings used primarily for arrhythmia detection and classification. It is
one of the most extensively used datasets for validating arrhythmia detection algorithms, offering a comprehensive
collection of annotated heartbeats and arrhythmia examples.

A summary of the characteristics of these two datasets is presented in Table 6.

• Human Activity Recognition datasets: Human activity recognition (HAR) using sensor data is a vital application of
time series analysis, with implications for health monitoring, elder care, and fitness tracking. In this study, we evaluate
our model using three prominent HAR datasets: UCIHAR, WISDM, and HHAR.
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– UCI Human Activity Recognition Using Smartphones (UCIHAR): This dataset is collected from experiments
that were carried out with a group of 30 volunteers performing six activities (walking, walking upstairs, walking
downstairs, sitting, standing, and laying) while wearing a smartphone on the waist. The smartphone’s embedded
accelerometer and gyroscope captured 3-axial linear acceleration and 3-axial angular velocity, respectively.

– Wireless Sensor Data Mining (WISDM): The WISDM dataset includes time series data from smartphone
sensors and wearable devices, capturing various human activities such as walking, jogging, sitting, and standing.
It provides a diverse set of user-generated activity data, making it suitable for testing the robustness of HAR
models across different motion patterns and sensor placements.

– Heterogeneity Human Activity Recognition (HHAR): HHAR dataset stands out due to its collection from
multiple device types, including smartphones and smartwatches, across different individuals performing activities
like biking, sitting, standing, walking, stair climbing, and more. Its heterogeneity in terms of device types and
positions offers a challenging benchmark for assessing a model’s ability to generalize across various sensor
configurations and activity types. Here, we utilized the data from the Samsung devices.

A summary of the characteristics of these three datasets is presented in Table 7.

Table 6: A description of characteristics of the biomedical datasets used in our experiments.

Dataset # Train # Test Length # Channel # Class

Sleep EEG 25,612 8,910 3,000 2 5
Arrhythmia ECG 70,043 21,892 187 1 2

Table 7: A description of characteristics of the Human Activity Recognition datasets used in our experiments.

Dataset # Train # Test Length # Channel # Class

UCIHAR 7,352 2,947 128 9 6
WISDM 4,731 2,561 128 3 6
HHAR 10,336 4,436 128 3 6

E.3. Forecasting

Our study leverages a diverse set of forecasting datasets to evaluate the effectiveness of our model across various domains:

• Electricity: This dataset contains electricity consumption records from 321 clients, offering insights into usage patterns
and enabling demand forecasting, crucial for optimizing power generation and distribution.

• ETT (Electricity Transformer Temperature) datasets: The ETTh1, ETTh2, ETTm1, and ETTm2 datasets provide
data on the temperature of electricity transformers and the load, facilitating the prediction of future temperatures and
loads based on past patterns. These datasets vary in granularity, with ”h” indicating hourly data and ”m” indicating
15-minute intervals, offering a range of temporal resolutions for forecasting challenges.

• Exchange Rate: Featuring daily exchange rates of different currencies against the US dollar, this dataset is vital for
financial forecasting, enabling models to anticipate currency fluctuations based on historical data.

• Traffic: Traffic dataset consists of hourly interstate 94 Westbound traffic volume for the Twin Cities (Minneapolis-St.
Paul) metropolitan area, allowing for the prediction of traffic flow patterns, essential for urban planning and congestion
management.

• Weather: This dataset includes hourly weather conditions and atmospheric measurements from a weather station,
supporting forecasts of various weather phenomena, crucial for agriculture, transportation, and daily life planning.

We describe the characteristics of these datasets in Table 8.
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Table 8: Descriptions of the forecasting datasets. Dim shows the variate number of each dataset. Dataset Size indicates the
size of the (Train, Validation, Test) split respectively. Frequency denotes the sampling interval of time points.

Dataset Dim Dataset Size Frequency Information

ECL 321 (18317, 2633, 5261) Hourly Electricity

ETTh1, ETTh2 7 (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 (34465, 11521, 11521) 15min Electricity

Exchange 8 (5120, 665, 1422) Daily Economy

Traffic 862 (12185, 1757, 3509) Hourly Transportation

Weather 21 (36792, 5271, 10540) 10min Weather

E.4. Anomaly Detection

Anomaly detection plays a pivotal role across various domains, enabling the identification of unusual patterns that may
indicate critical incidents, such as system failures, security breaches, or environmental changes. In our study, we assess the
performance of our model using five benchmark datasets, each representing a distinct application area, to demonstrate its
effectiveness in detecting anomalies in diverse settings:

• SMD (Server Machine Dataset): Utilized for server monitoring, the SMD dataset comprises multivariate time series
data collected from servers and aims to identify unusual server behaviors that could indicate failures or security issues.

• MSL (Mars Science Laboratory): This dataset contains telemetry data from the Mars Science Laboratory rover,
focusing on space exploration applications. Anomaly detection in this context is crucial for identifying potential issues
with spacecraft systems based on their operational data.

• SMAP (Soil Moisture Active Passive): Related to earth observations, the SMAP dataset includes soil moisture
measurements intended for environmental monitoring. Detecting anomalies in soil moisture can provide insights into
environmental conditions and potential agricultural impacts.

• SWaT (Secure Water Treatment): In the domain of water treatment security, the SWaT dataset consists of data from
a water treatment testbed, simulating the operational data of water treatment plants. Anomaly detection here is vital for
ensuring the safety and security of water treatment processes.

• PSM (Pump Sensor Monitoring): Focused on industrial pump sensors, the PSM dataset gathers sensor data from
pumps in industrial settings. Anomalies in this dataset can indicate equipment malfunctions or the need for maintenance,
critical for preventing industrial accidents.

The detailed characteristics of these datasets is presented in Table 9.

Table 9: Descriptions of the Anomaly detection datasets. Dim shows the variate number of each dataset. Dataset Size
indicates the size of the (Train, Validation, Test) split respectively. Frequency denotes the sampling interval of time points.

Dataset Dim Length Dataset Size Information

SMD 38 100 (566724, 141681, 708420) Server Machine

MSL 55 100 (44653, 11664, 73729) Spacecraft

SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

F. Full Results
F.1. Classification
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Dataset TSLANet GPT4TS TimesNet ROCKET CrossF. Pat.TST MLP TS-TCC TS2VEC

Adiac 80.56 52.69 24.04 78.52 58.31 34.78 61.38 76.57 72.89
ArrowHead 80.57 66.29 49.71 77.31 73.71 72.57 75.43 62.20 77.71
Beef 90.00 66.67 60.00 67.33 73.33 76.67 73.33 47.32 76.67
BeetleFly 90.00 85.00 80.00 88.00 85.00 80.00 80.00 31.25 85.00
BirdChicken 100.00 85.00 60.00 84.50 85.00 80.00 75.00 75.00 80.00
CBF 97.56 92.00 92.22 89.67 89.56 85.11 83.44 90.79 88.33
Car 88.33 76.67 30.00 99.52 86.67 75.00 86.67 71.88 99.22
ChlorineConcentration 85.94 61.25 55.21 69.40 61.72 56.56 61.72 57.40 71.85
CinC ECG torso 85.51 23.99 51.74 84.96 84.93 66.88 46.67 95.55 79.28
Coffee 100.00 100.00 53.57 100.00 100.00 100.00 100.00 95.83 100.00
Computers 68.40 52.00 62.40 66.48 63.20 69.60 58.00 61.95 60.40
Cricket X 76.15 6.41 55.64 77.31 41.79 45.38 32.56 77.25 76.15
Cricket Y 78.72 49.74 55.90 79.15 47.69 43.59 42.31 75.75 73.08
Cricket Z 80.00 8.21 57.44 79.33 41.79 47.95 32.56 75.83 76.92
DiatomSizeReduction 92.16 88.89 48.69 97.68 95.75 91.18 93.14 95.94 97.71
DistalPhalanxOutlineAgeGroup 86.50 86.50 80.25 76.12 80.75 82.00 80.50 85.25 81.25
DistalPhalanxOutlineCorrect 80.67 75.67 73.67 75.68 76.17 78.50 75.50 80.76 81.17
DistalPhalanxTW 80.50 78.25 77.25 70.07 79.25 79.00 79.50 79.50 78.00
Earthquakes 82.30 38.82 23.60 75.32 82.30 80.75 59.94 75.89 72.36
ECG200 88.00 85.00 90.00 84.90 86.00 89.00 84.00 87.50 87.00
ECG5000 94.62 93.40 93.47 94.72 94.36 93.87 94.18 94.19 93.33
ECGFiveDays 99.30 94.77 83.74 100.00 98.49 86.41 96.63 90.71 100.00
ElectricDevices 68.28 56.36 68.58 66.84 61.87 74.66 48.22 69.31 68.10
FaceAll 82.31 37.22 73.61 93.33 90.53 79.94 78.64 76.99 79.17
FaceFour 94.32 7.95 52.27 77.39 93.18 86.36 82.95 85.42 94.32
FacesUCR 92.39 82.88 46.00 94.81 83.07 77.46 74.39 92.93 94.24
FiftyWords 80.00 36.48 61.32 76.92 62.86 55.16 58.90 77.62 79.12
FISH 94.29 71.43 59.43 96.86 84.57 71.43 87.43 61.29 93.14
FordA 93.06 50.49 66.20 90.61 70.62 50.90 51.32 92.35 89.28
FordB 91.39 61.99 54.43 77.53 52.70 52.20 51.16 91.72 83.50
Gun Point 99.33 90.00 87.33 99.33 89.33 94.00 85.33 93.33 98.00
Ham 80.00 51.43 65.71 69.43 78.10 73.33 77.14 75.00 72.38
HandOutlines 88.90 36.20 86.30 94.35 86.00 85.20 86.40 85.81 85.70
Haptics 47.73 26.95 37.01 50.84 43.83 41.23 46.10 44.06 43.51
Herring 67.19 40.63 59.38 64.38 68.75 64.06 70.31 60.94 64.06
InlineSkate 36.73 18.91 25.82 39.64 30.91 29.45 27.82 29.76 38.55
InsectWingbeatSound 66.36 63.23 60.00 63.92 64.29 57.83 64.75 66.52 63.79
ItalyPowerDemand 97.08 96.89 97.08 97.17 97.28 96.60 96.89 96.44 95.63
LargeKitchenAppliances 81.87 33.33 47.20 81.47 53.87 63.20 42.13 76.08 86.40
Lighting2 83.61 54.10 72.13 73.61 75.41 75.41 67.21 73.56 86.89
Lighting7 83.56 53.42 72.60 68.63 72.60 67.12 64.38 81.53 83.56
MALLAT 94.71 91.86 54.50 94.12 93.48 84.01 95.05 91.11 89.13
Meat 93.33 50.00 33.33 93.33 88.33 91.67 80.00 31.25 91.67
MedicalImages 72.76 61.18 58.95 75.42 65.79 63.03 59.61 74.35 75.79
MiddlePhalanxOutlineAgeGroup 81.25 74.50 78.75 83.64 80.75 79.75 80.75 78.25 75.25
MiddlePhalanxOutlineCorrect 84.00 64.67 64.67 61.36 64.50 64.83 64.50 52.47 71.67
MiddlePhalanxTW 65.91 64.91 64.66 53.77 64.66 64.16 65.16 56.10 61.65
MoteStrain 93.13 87.14 88.34 83.49 87.22 89.54 86.74 85.28 87.86
NonInvasiveFatalECG Thorax1 93.44 72.98 81.58 95.65 86.97 78.73 92.98 84.58 90.48
NonInvasiveFatalECG Thorax2 93.74 88.04 84.38 95.59 90.53 85.24 93.49 82.50 93.74
OliveOil 40.00 40.00 40.00 80.33 60.00 83.33 70.00 42.86 90.00
OSULeaf 74.79 9.50 43.39 82.89 49.59 42.15 45.04 63.28 76.86
PhalangesOutlinesCorrect 82.40 77.04 68.30 83.11 69.35 65.97 66.90 78.73 80.77
Phoneme 27.27 3.22 9.70 20.92 11.23 9.12 8.60 30.04 26.79
Plane 100.00 97.14 98.10 100.00 98.10 99.05 97.14 96.43 100.00
ProximalPhalanxOutlineAgeGroup 88.29 83.90 86.34 90.17 86.34 86.34 85.85 73.34 81.95
ProximalPhalanxOutlineCorrect 91.75 81.79 77.66 86.59 84.54 78.01 81.79 87.17 87.29
ProximalPhalanxTW 83.00 81.50 81.75 78.98 80.00 80.25 82.75 72.75 79.00
RefrigerationDevices 55.47 33.60 33.60 50.40 42.40 45.87 38.67 49.74 51.20
ScreenType 44.80 37.07 44.00 41.55 45.07 44.80 40.27 39.99 40.00
ShapeletSim 90.00 49.44 50.00 65.72 57.22 56.67 56.67 61.98 87.78
ShapesAll 85.17 61.17 64.33 86.63 68.17 61.00 61.83 79.11 88.00
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SmallKitchenAppliances 76.27 33.33 45.60 62.13 55.47 61.60 41.33 74.74 71.20
SonyAIBORobotSurface 85.86 42.93 70.55 93.16 81.03 83.69 70.38 68.46 89.18
SonyAIBORobotSurfaceII 92.44 70.30 85.62 91.26 85.73 85.73 85.10 86.15 90.66
StarLightCurves 97.41 92.70 89.22 97.63 92.74 86.09 91.96 96.80 96.28
Strawberry 98.37 94.94 93.15 97.84 94.45 93.15 95.76 93.59 96.57
SwedishLeaf 96.16 88.32 83.40 96.10 82.08 76.64 80.96 92.31 93.60
Symbols 94.07 16.98 86.43 96.71 86.13 82.21 84.72 86.08 96.58
Synthetic control 100.00 97.67 99.67 99.53 93.67 99.67 87.00 99.67 99.67
ToeSegmentation1 87.72 52.63 61.40 94.21 62.28 66.23 60.09 78.75 92.11
ToeSegmentation2 90.00 75.38 86.15 91.00 81.54 76.92 58.46 59.72 87.69
Trace 100.00 68.00 66.00 100.00 74.00 100.00 67.00 97.32 100.00
TwoLeadECG 93.85 76.56 68.74 100.00 86.65 84.55 91.48 81.63 99.78
Two Patterns 100.00 99.58 98.00 100.00 79.90 93.23 84.13 100.00 99.21
uWaveGestureLibrary X 82.80 69.65 69.37 82.64 66.78 65.02 64.77 80.97 77.89
uWaveGestureLibrary Y 73.53 54.22 62.67 73.83 61.33 55.11 60.19 71.22 67.87
uWaveGestureLibrary Z 75.15 59.27 60.44 75.05 59.35 55.05 56.98 72.92 72.67
uWaveGestureLibraryAll 97.57 85.54 90.28 97.20 88.02 87.58 88.22 96.54 91.99
wafer 99.81 99.58 99.71 99.84 98.39 99.63 94.78 99.69 99.85
Wine 66.67 53.70 50.00 71.30 68.52 77.78 72.22 57.81 85.19
WordsSynonyms 69.28 7.37 50.16 71.30 56.90 49.06 44.83 66.12 68.81
Worms 60.77 17.68 43.65 65.97 34.25 34.81 31.49 51.98 55.80
WormsTwoClass 77.35 58.01 62.98 76.62 62.43 60.77 58.01 64.48 69.61
yoga 85.83 71.83 67.77 90.49 73.87 68.43 65.13 77.46 84.23

Average 83.18 61.58 65.27 81.42 73.47 71.84 69.68 75.07 81.42

1st count 38 0 1 27 2 2 2 4 9

Table 10: Full classification results on the UCR datasets in terms of accuracy (as %).

Table 11: Full classification results on the UEA datasets in terms of accuracy (as %).

Dataset TSLANet GPT4TS TimesNet ROCKET CrossF. PatchTST MLP TS-TCC TS2VEC

ArticularyWordRecognition 99.00 93.33 96.18 99.33 98.00 97.67 97.33 98.00 87.33
AtrialFibrillation 40.00 33.33 33.33 20.00 46.66 53.33 46.66 33.33 53.33
BasicMotions 100.00 92.50 100.00 100.00 90.00 92.50 85.00 100.00 92.50
Cricket 98.61 8.33 87.50 98.61 84.72 84.72 91.67 93.06 65.28
Epilepsy 98.55 85.51 78.13 98.55 73.19 65.94 60.14 97.10 62.32
EthanolConcentration 30.42 25.48 27.73 42.58 34.98 28.90 33.46 32.32 40.68
FaceDetection 66.77 65.58 67.47 64.70 66.17 68.96 67.42 63.05 50.96
FingerMovements 61.00 57.00 59.38 61.00 64.00 62.00 64.00 44.00 51.00
HandMovementDirection 52.70 18.92 50.00 50.00 58.11 58.11 58.11 64.86 32.43
Handwriting 57.88 3.76 26.18 48.47 26.24 26.00 22.47 47.76 15.53
Heartbeat 77.56 36.59 74.48 69.76 76.59 76.59 73.17 77.07 69.76
InsectWingbeat 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
JapaneseVowels 99.19 98.11 97.83 95.68 98.92 98.65 97.84 97.30 90.00
Libras 92.78 79.44 77.84 83.89 76.11 81.11 73.33 86.67 85.56
LSST 66.34 46.39 59.21 54.10 42.82 67.80 35.77 49.23 39.01
MotorImagery 62.00 50.00 51.04 53.00 61.00 61.00 61.00 47.00 47.00
NATOPS 95.56 91.67 81.82 83.33 88.33 96.67 93.89 96.11 82.22
PEMS-SF 83.82 87.28 88.13 75.10 82.08 88.44 82.08 86.71 72.25
PenDigits 98.94 97.74 98.19 97.34 93.65 99.23 92.94 98.51 97.40
PhonemeSpectra 17.75 3.01 18.24 17.60 7.55 11.69 7.10 25.92 8.23
RacketSports 90.79 76.97 82.64 86.18 81.58 84.21 78.95 84.87 74.34
SelfRegulationSCP1 91.81 91.47 77.43 84.64 92.49 89.76 88.40 91.13 77.13
SelfRegulationSCP2 61.67 51.67 52.84 54.44 53.33 54.44 51.67 53.89 51.11
SpokenArabicDigits 99.91 99.36 98.36 99.20 96.41 99.68 96.68 99.77 85.27
StandWalkJump 46.67 33.33 53.33 46.67 53.33 60.00 60.00 40.00 46.67
UWaveGestureLibrary 91.25 84.38 83.13 94.40 81.56 80.00 81.88 86.25 62.81

Average 72.73 58.51 66.55 68.79 66.84 69.13 65.81 69.38 59.62

1st count 12 0 0 3 2 7 0 2 0
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Table 12: Full classification results on the human activity recognition and biomedical signal datasets in terms of accuracy
(as %).

Dataset TSLANet GPT4TS TimesNet ROCKET CrossF. PatchTST MLP TS-TCC TS2VEC

UCIHAR 96.06 91.24 91.34 94.37 76.59 92.70 63.49 95.95 96.19
WISDM 97.77 89.49 89.61 97.03 77.31 95.94 58.88 97.05 93.87
HHAR 98.53 97.40 93.59 97.93 78.74 95.96 47.70 98.49 97.05

Average 97.46 92.71 91.51 96.44 77.55 94.87 56.69 97.16 95.70

EEG 82.10 76.37 75.86 76.69 53.30 69.69 49.70 86.06 75.13
ECG 98.37 97.70 98.33 97.72 88.33 98.06 91.57 98.44 97.48

Average 90.24 87.04 87.10 87.20 70.82 83.87 70.63 92.25 86.31

F.2. Forecasting

Table 13: Full forecasting results on different prediction lengths ∈ {96, 192, 336, 720}. Lower MSE indicates better
performance.

Methods TSLANet Time-LLM iTransformer PatchTST Crossformer FEDformer Autoformer RLinear Dlinear TimesNet GPT4TS SCINet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C
L

96 0.136 0.229 0.131 0.224 0.148 0.240 0.138 0.230 0.219 0.314 0.193 0.308 0.201 0.317 0.201 0.281 0.140 0.237 0.168 0.272 0.139 0.238 0.247 0.345
192 0.152 0.244 0.152 0.241 0.162 0.253 0.149 0.243 0.231 0.322 0.201 0.315 0.222 0.334 0.201 0.283 0.153 0.249 0.184 0.289 0.153 0.251 0.257 0.355
336 0.168 0.262 0.160 0.248 0.178 0.269 0.169 0.262 0.246 0.337 0.214 0.329 0.231 0.338 0.215 0.298 0.169 0.267 0.198 0.300 0.169 0.266 0.269 0.369
720 0.205 0.293 0.192 0.298 0.225 0.317 0.211 0.299 0.280 0.363 0.246 0.355 0.254 0.361 0.257 0.331 0.203 0.301 0.220 0.320 0.206 0.297 0.299 0.390

Avg 0.165 0.257 0.158 0.252 0.178 0.270 0.167 0.259 0.244 0.334 0.214 0.327 0.227 0.338 0.219 0.298 0.166 0.264 0.193 0.295 0.167 0.263 0.268 0.365

E
T
T
h
1

96 0.370 0.394 0.362 0.392 0.386 0.405 0.382 0.401 0.423 0.448 0.376 0.419 0.449 0.459 0.386 0.395 0.375 0.399 0.384 0.402 0.376 0.397 0.654 0.599
192 0.412 0.417 0.398 0.418 0.441 0.436 0.428 0.425 0.471 0.474 0.420 0.448 0.500 0.482 0.437 0.424 0.405 0.416 0.436 0.429 0.416 0.418 0.719 0.631
336 0.399 0.416 0.430 0.427 0.487 0.458 0.451 0.436 0.570 0.546 0.459 0.465 0.521 0.496 0.479 0.446 0.439 0.443 0.491 0.469 0.442 0.433 0.778 0.659
720 0.472 0.475 0.442 0.457 0.503 0.491 0.452 0.459 0.653 0.621 0.506 0.507 0.514 0.512 0.481 0.470 0.472 0.490 0.521 0.500 0.477 0.456 0.836 0.699

Avg 0.413 0.426 0.408 0.423 0.454 0.448 0.428 0.430 0.529 0.522 0.440 0.460 0.496 0.487 0.446 0.434 0.423 0.437 0.458 0.450 0.428 0.426 0.747 0.647

E
T
T
h
2

96 0.280 0.341 0.268 0.328 0.297 0.349 0.285 0.340 0.745 0.584 0.358 0.397 0.346 0.388 0.288 0.338 0.289 0.353 0.340 0.374 0.285 0.342 0.707 0.621
192 0.330 0.375 0.329 0.375 0.380 0.400 0.356 0.386 0.877 0.656 0.429 0.439 0.456 0.452 0.374 0.390 0.383 0.418 0.402 0.414 0.354 0.389 0.860 0.689
336 0.317 0.374 0.368 0.409 0.428 0.432 0.350 0.395 1.043 0.731 0.496 0.487 0.482 0.486 0.415 0.426 0.448 0.465 0.452 0.452 0.373 0.407 1.000 0.744
720 0.404 0.440 0.372 0.420 0.427 0.445 0.395 0.427 1.104 0.763 0.463 0.474 0.515 0.511 0.420 0.440 0.605 0.551 0.462 0.468 0.406 0.441 1.249 0.838

Avg 0.333 0.383 0.334 0.383 0.383 0.407 0.347 0.387 0.942 0.684 0.437 0.449 0.450 0.459 0.374 0.399 0.431 0.447 0.414 0.427 0.355 0.395 0.954 0.723

E
T
T
m
1 96 0.289 0.349 0.272 0.334 0.334 0.368 0.291 0.340 0.404 0.426 0.379 0.419 0.505 0.475 0.355 0.376 0.299 0.343 0.338 0.375 0.292 0.346 0.418 0.438

192 0.328 0.370 0.310 0.358 0.377 0.391 0.328 0.365 0.450 0.451 0.426 0.441 0.553 0.496 0.391 0.392 0.335 0.365 0.374 0.387 0.332 0.372 0.439 0.450
336 0.355 0.389 0.352 0.384 0.426 0.420 0.365 0.389 0.532 0.515 0.445 0.459 0.621 0.537 0.424 0.415 0.369 0.386 0.410 0.411 0.366 0.394 0.490 0.485
720 0.421 0.425 0.383 0.411 0.491 0.459 0.422 0.423 0.666 0.589 0.543 0.490 0.671 0.561 0.487 0.450 0.425 0.421 0.478 0.450 0.417 0.421 0.595 0.550

Avg 0.348 0.383 0.329 0.372 0.407 0.410 0.352 0.379 0.513 0.495 0.448 0.452 0.588 0.517 0.414 0.408 0.357 0.379 0.400 0.406 0.352 0.383 0.486 0.481

E
T
T
m
2 96 0.169 0.259 0.161 0.253 0.180 0.264 0.169 0.254 0.287 0.366 0.203 0.287 0.255 0.339 0.182 0.265 0.167 0.260 0.187 0.267 0.173 0.262 0.286 0.377

192 0.224 0.297 0.219 0.293 0.250 0.309 0.230 0.294 0.414 0.492 0.269 0.328 0.281 0.340 0.246 0.304 0.224 0.303 0.249 0.309 0.229 0.301 0.399 0.445
336 0.275 0.329 0.271 0.329 0.311 0.348 0.280 0.329 0.597 0.542 0.325 0.366 0.339 0.372 0.307 0.342 0.281 0.342 0.321 0.351 0.286 0.341 0.637 0.591
720 0.354 0.380 0.352 0.379 0.412 0.407 0.378 0.386 1.730 1.042 0.421 0.415 0.433 0.432 0.407 0.398 0.397 0.421 0.408 0.403 0.378 0.401 0.960 0.735

Avg 0.256 0.316 0.251 0.313 0.288 0.332 0.264 0.316 0.757 0.611 0.305 0.349 0.327 0.371 0.286 0.327 0.267 0.332 0.291 0.333 0.267 0.326 0.571 0.537

E
x
ch

a
n
g
e 96 0.083 0.201 - - 0.086 0.206 0.088 0.205 0.256 0.367 0.148 0.278 0.197 0.323 0.093 0.217 0.081 0.203 0.107 0.234 0.082 0.199 0.267 0.396

192 0.177 0.299 - - 0.177 0.299 0.176 0.299 0.470 0.509 0.271 0.315 0.300 0.369 0.184 0.307 0.157 0.293 0.226 0.344 0.171 0.293 0.351 0.459
336 0.331 0.417 - - 0.331 0.417 0.301 0.397 1.268 0.883 0.460 0.427 0.509 0.524 0.351 0.432 0.305 0.414 0.367 0.448 0.354 0.428 1.324 0.853
720 0.888 0.739 - - 0.847 0.691 0.901 0.714 1.767 1.068 1.195 0.695 1.447 0.941 0.886 0.714 0.643 0.601 0.964 0.746 0.877 0.704 1.058 0.797

Avg 0.370 0.414 - - 0.360 0.403 0.367 0.404 0.940 0.707 0.519 0.429 0.613 0.539 0.379 0.418 0.297 0.378 0.416 0.443 0.371 0.406 0.750 0.626

T
ra

f
f
ic

96 0.372 0.261 0.362 0.248 0.395 0.268 0.401 0.267 0.522 0.290 0.587 0.366 0.613 0.388 0.649 0.389 0.410 0.282 0.593 0.321 0.388 0.282 0.788 0.499
192 0.388 0.266 0.374 0.247 0.417 0.276 0.406 0.268 0.530 0.293 0.604 0.373 0.616 0.382 0.601 0.366 0.423 0.287 0.617 0.336 0.407 0.290 0.789 0.505
336 0.394 0.269 0.385 0.271 0.433 0.283 0.421 0.277 0.558 0.305 0.621 0.383 0.622 0.337 0.609 0.369 0.436 0.296 0.629 0.336 0.412 0.294 0.797 0.508
720 0.430 0.289 0.43 0.288 0.467 0.302 0.452 0.297 0.589 0.328 0.626 0.382 0.660 0.408 0.647 0.387 0.466 0.315 0.640 0.350 0.450 0.312 0.841 0.523

Avg 0.396 0.271 0.388 0.264 0.428 0.282 0.420 0.277 0.550 0.304 0.610 0.376 0.628 0.379 0.627 0.378 0.434 0.295 0.620 0.336 0.414 0.295 0.804 0.509

W
ea

th
er

96 0.148 0.197 0.147 0.201 0.174 0.214 0.160 0.204 0.158 0.230 0.217 0.296 0.266 0.336 0.192 0.232 0.176 0.237 0.172 0.220 0.162 0.212 0.221 0.306
192 0.193 0.241 0.189 0.234 0.221 0.254 0.204 0.245 0.206 0.277 0.276 0.336 0.307 0.367 0.240 0.271 0.220 0.282 0.219 0.261 0.204 0.248 0.261 0.340
336 0.245 0.282 0.262 0.279 0.278 0.296 0.257 0.285 0.272 0.335 0.339 0.380 0.359 0.395 0.292 0.307 0.265 0.319 0.280 0.306 0.254 0.286 0.309 0.378
720 0.325 0.337 0.304 0.316 0.358 0.349 0.329 0.338 0.398 0.418 0.403 0.428 0.419 0.428 0.364 0.353 0.323 0.362 0.365 0.359 0.326 0.337 0.377 0.427

Avg 0.228 0.264 0.225 0.257 0.258 0.278 0.238 0.268 0.259 0.315 0.309 0.360 0.338 0.382 0.272 0.291 0.246 0.300 0.259 0.287 0.237 0.271 0.292 0.363
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Table 14: Full results for the anomaly detection.

Methods SMD MSL SMAP SWaT PSM Avg F1
Metrics P R F1 P R F1 P R F1 P R F1 P R F1 %

TSLANet (Ours) 85.58 90.37 87.91 77.46 90.12 83.32 92.45 64.47 75.96 91.50 94.14 92.80 98.36 98.55 97.73 87.54
GPT4TS 88.89 84.98 86.89 82.00 82.91 82.45 90.60 60.95 72.88 92.20 96.34 94.23 98.62 95.68 97.13 86.72
TimesNet 87.91 81.54 84.61 89.54 75.36 81.84 90.14 56.40 69.39 90.75 95.40 93.02 98.51 96.20 97.34 85.24
PatchTST 87.26 82.14 84.62 88.34 70.96 78.70 90.64 55.46 68.82 91.10 80.94 85.72 98.84 93.47 96.08 82.79

ETSformer 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
FEDformer 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97

LightTS 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
DLinear 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46

Stationary 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
Autoformer 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
Pyraformer 85.61 80.61 83.04 83.81 85.93 84.86 92.34 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57

Anomaly Transformer 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Informer 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Reformer 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31

LogTransformer 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.31 80.52 63.06 98.00 76.74 76.60
Transformer 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88

F.3. Anomaly Detection

G. Future Work
TSLANet is aimed to be a foundation model for time series analysis. Therefore, we have some future directions toward
achieving this goal. These are summarized as follows.

Large-Scale Pretraining We aim to explore the potential of TSLANet when pretrained on a diverse and large cohort
of datasets. This would enable us to assess the model’s generalization capabilities and its performance on few-shot and
zero-shot learning tasks. In addition, this would give our model an advantage in competing against LLM-pretrained models
in time series analysis.

Better Pretraining Task We aim to develop other pretraining tasks beyond the current masking approach, which, while
straightforward and effective for initial learning, presents limitations in fully capturing the complexity of time series data.
Masking may not adequately challenge the model to learn the intricate temporal dependencies and patterns essential for
advanced classification and forecasting. This exploration will contribute to evolving TSLANet into a more refined and
capable foundation model for time series analysis.

Enhanced Noise Reduction Techniques Building upon the adaptive spectral filtering capabilities of TSLANet, future
work could explore more sophisticated noise reduction techniques that can adapt to a wider variety of noise patterns and
distributions, as well as be adept to the quick fluctuations in short-term forecasting problems.
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