3 Commits

Author SHA1 Message Date
a9a0e51769 # 修改记录日志 (日期: 2025-07-16)
## 1. 核心 Bug 修复

### 文件: `server/core/predictor.py`

- **问题**: 在 `train_model` 方法中调用内部辅助函数 `_prepare_training_params` 时,没有正确传递 `product_ids` 和 `store_ids` 参数,导致在 `_prepare_training_params` 内部发生 `NameError`。
- **修复**:
    - 修正了 `train_model` 方法内部对 `_prepare_training_params` 的调用,确保 `product_ids` 和 `store_ids` 被显式传递。
    - 此前已修复 `train_model` 的函数签名,使其能正确接收 `store_ids`。
- **结果**: 彻底解决了训练流程中的参数传递问题,根除了由此引发的 `NameError`。

## 2. 代码清理与重构

### 文件: `server/api.py`

- **内容**: 移除了在 `start_training` API 端点中遗留的旧版、基于线程(`threading.Thread`)的训练逻辑。
- **原因**: 该代码块已被新的、基于多进程(`multiprocessing`)的 `TrainingProcessManager` 完全取代。旧代码中包含了大量用于调试的 `thread_safe_print` 日志,已无用处。
- **结果**: `start_training` 端点的逻辑变得更加清晰,只负责参数校验和向 `TrainingProcessManager` 提交任务。

### 文件: `server/utils/training_process_manager.py`

- **内容**: 在 `TrainingWorker` 的 `run_training_task` 方法中,移除了一个用于模拟训练进度的 `for` 循环。
- **原因**: 该循环包含 `time.sleep(1)`,仅用于在没有实际训练逻辑时模拟进度更新,现在实际的训练器会通过回调函数报告真实进度,因此该模拟代码不再需要。
- **结果**: `TrainingWorker` 现在直接调用实际的训练器,不再有模拟延迟,代码更贴近生产环境。

## 3. 启动依赖

- **Python**: 3.x
- **主要库**:
    - Flask
    - Flask-SocketIO
    - Flasgger
    - pandas
    - numpy
    - torch
    - scikit-learn
    - matplotlib
- **启动命令**: `python server/api.py`
2025-07-16 15:34:57 +08:00
e999ed4af2 ### 2025-07-15 (续): 训练器与核心调用层重构
**核心目标**: 将新的 `ModelManager` 统一应用到项目中所有剩余的模型训练器,并重构核心调用逻辑,确保整个训练链路的架构一致性。

**1. 修改 `server/trainers/kan_trainer.py`**
*   **内容**: 完全重写了 `kan_trainer.py`。
    *   **适配接口**: 函数签名与 `mlstm_trainer` 对齐,增加了 `socketio`, `task_id`, `patience` 等参数。
    *   **集成 `ModelManager`**: 移除了所有旧的、手动的保存逻辑,改为在训练开始时调用 `model_manager` 获取版本号和路径。
    *   **标准化产物保存**: 所有产物(模型、元数据、检查点、损失曲线)均通过 `model_manager.save_model_artifact()` 保存。
    *   **增加健壮性**: 引入了早停(Early Stopping)和保存最佳检查点(Best Checkpoint)的逻辑。

**2. 修改 `server/trainers/tcn_trainer.py`**
*   **内容**: 完全重写了 `tcn_trainer.py`,应用了与 `kan_trainer` 完全相同的重构模式。
    *   移除了旧的 `save_checkpoint` 辅助函数和基于 `core.config` 的版本管理。
    *   全面转向使用 `model_manager` 进行版本控制和文件保存。
    *   统一了函数签名和进度反馈逻辑。

**3. 修改 `server/trainers/transformer_trainer.py`**
*   **内容**: 完全重写了 `transformer_trainer.py`,完成了对所有训练器的统一重构。
    *   移除了所有遗留的、基于文件名的路径拼接和保存逻辑。
    *   实现了与其它训练器一致的、基于 `ModelManager` 的标准化训练流程。

**4. 修改 `server/core/predictor.py`**
*   **内容**: 对核心预测器类 `PharmacyPredictor` 进行了彻底重构。
    *   **统一调用接口**: `train_model` 方法现在以完全一致的方式调用所有(`mlstm`, `kan`, `tcn`, `transformer`)训练器。
    *   **移除旧逻辑**: 删除了 `_parse_model_filename` 等所有基于文件名解析的旧方法。
    *   **适配 `ModelManager`**: `list_models` 和 `delete_model` 等方法现在直接调用 `model_manager` 的相应功能,不再自己实现逻辑。
    *   **简化 `predict`**: 预测方法现在直接接收标准化的模型版本路径 (`model_version_path`) 作为输入,逻辑更清晰。
2025-07-15 20:09:09 +08:00
9bd824c389 ---
**日期**: 2025-07-15 14:05
**主题**: 仪表盘UI调整

### 描述
根据用户请求,将仪表盘上的“数据管理”卡片替换为“店铺管理”。

### 主要改动
*   **文件**: `UI/src/views/DashboardView.vue`
*   **修改**:
    1.  在 `featureCards` 数组中,将原“数据管理”的对象修改为“店铺管理”。
    2.  更新了卡片的 `title`, `description`, `icon` 和 `path`,使其指向店铺管理页面 (`/store-management`)。
    3.  在脚本中导入了新的 `Shop` 图标。

### 结果
仪表盘现在直接提供到“店铺管理”页面的快捷入口,提高了操作效率,调整店铺管理的样式。
2025-07-15 19:18:25 +08:00