diff --git a/server/trainers/cnn_bilstm_attention_trainer.py b/server/trainers/cnn_bilstm_attention_trainer.py index c8d4147..47b100f 100644 --- a/server/trainers/cnn_bilstm_attention_trainer.py +++ b/server/trainers/cnn_bilstm_attention_trainer.py @@ -132,7 +132,7 @@ def train_with_cnn_bilstm_attention(product_id, model_identifier, product_df, st loss_curve_path = plot_loss_curve( loss_history['train'], loss_history['val'], - product_name, + model_identifier, 'cnn_bilstm_attention', model_dir=model_dir ) diff --git a/server/trainers/mlstm_trainer.py b/server/trainers/mlstm_trainer.py index d3d0bf1..1cb0233 100644 --- a/server/trainers/mlstm_trainer.py +++ b/server/trainers/mlstm_trainer.py @@ -393,19 +393,9 @@ def train_product_model_with_mlstm( emit_progress("生成损失曲线...", progress=95) - # 确定模型保存目录(支持多店铺) - if store_id: - # 为特定店铺创建子目录 - store_model_dir = os.path.join(model_dir, 'mlstm', store_id) - os.makedirs(store_model_dir, exist_ok=True) - loss_curve_filename = f"{product_id}_mlstm_{version}_loss_curve.png" - loss_curve_path = os.path.join(store_model_dir, loss_curve_filename) - else: - # 全局模型保存在global目录 - global_model_dir = os.path.join(model_dir, 'mlstm', 'global') - os.makedirs(global_model_dir, exist_ok=True) - loss_curve_filename = f"{product_id}_mlstm_{version}_global_loss_curve.png" - loss_curve_path = os.path.join(global_model_dir, loss_curve_filename) + # 确定模型保存目录 + loss_curve_filename = f"{model_identifier}_mlstm_{version}_loss_curve.png" + loss_curve_path = os.path.join(model_dir, loss_curve_filename) # 绘制损失曲线并保存到模型目录 plt.figure(figsize=(10, 6))