173 lines
7.1 KiB
Python
173 lines
7.1 KiB
Python
|
import os
|
|||
|
import json
|
|||
|
import shutil
|
|||
|
import uuid
|
|||
|
from typing import Dict, Any, List, Tuple
|
|||
|
|
|||
|
from server.repositories.model_repository import ModelRepository
|
|||
|
from server.utils.hashing import generate_hash
|
|||
|
from server.services.version_manager import VersionManager
|
|||
|
|
|||
|
class ModelManagementService:
|
|||
|
"""
|
|||
|
负责根据训练负载(payload)来管理模型的整个生命周期,
|
|||
|
包括路径构建、版本控制、文件保存和数据库记录。
|
|||
|
"""
|
|||
|
def __init__(self, repository: ModelRepository, base_path='saved_models'):
|
|||
|
self.repository = repository
|
|||
|
self.base_path = base_path
|
|||
|
self.version_manager = VersionManager(base_path)
|
|||
|
|
|||
|
def save_model_for_training(self, payload: Dict[str, Any], artifacts: Dict[str, str]):
|
|||
|
"""
|
|||
|
主分发函数,根据 training_mode 调用相应的处理方法。
|
|||
|
在保存前,会强制校验所有必需的产物是否都已提供。
|
|||
|
"""
|
|||
|
# 步骤1:强制校验产物完整性
|
|||
|
REQUIRED_ARTIFACTS = {'model.pth', 'checkpoint_best.pth', 'metadata.json', 'loss_curve.png'}
|
|||
|
provided_artifacts = set(artifacts.keys())
|
|||
|
|
|||
|
if not REQUIRED_ARTIFACTS.issubset(provided_artifacts):
|
|||
|
missing = REQUIRED_ARTIFACTS - provided_artifacts
|
|||
|
raise ValueError(f"模型产物不完整,缺少以下必需文件: {', '.join(missing)}")
|
|||
|
|
|||
|
# 步骤2:根据训练模式获取路径和数据库记录
|
|||
|
training_mode = payload.get('training_mode')
|
|||
|
handler_map = {
|
|||
|
'product': self._handle_product_training,
|
|||
|
'store': self._handle_store_training,
|
|||
|
'global': self._handle_global_training,
|
|||
|
}
|
|||
|
handler = handler_map.get(training_mode)
|
|||
|
if not handler:
|
|||
|
raise ValueError(f"未知的训练模式: {training_mode}")
|
|||
|
final_path, db_record = handler(payload)
|
|||
|
|
|||
|
# 步骤3:创建目录并移动产物文件
|
|||
|
os.makedirs(final_path, exist_ok=True)
|
|||
|
for artifact_name, temp_path in artifacts.items():
|
|||
|
# metadata.json 由db_record生成,特殊处理
|
|||
|
if artifact_name == 'metadata.json':
|
|||
|
continue
|
|||
|
shutil.move(temp_path, os.path.join(final_path, artifact_name))
|
|||
|
|
|||
|
# 步骤4:写入最终的元数据文件
|
|||
|
# 将训练器生成的元数据与服务层生成的元数据合并
|
|||
|
# 从临时文件中读取训练器生成的元数据
|
|||
|
trainer_metadata = {}
|
|||
|
metadata_path = artifacts.get('metadata.json')
|
|||
|
if metadata_path and os.path.exists(metadata_path):
|
|||
|
with open(metadata_path, 'r', encoding='utf-8') as f:
|
|||
|
# 增加异常处理,防止因文件为空或格式错误导致整个流程失败
|
|||
|
try:
|
|||
|
trainer_metadata = json.load(f)
|
|||
|
except json.JSONDecodeError:
|
|||
|
print(f"警告: 无法解析元数据文件 {metadata_path}。文件可能为空或格式不正确。")
|
|||
|
|
|||
|
# 合并元数据
|
|||
|
db_record.update(trainer_metadata)
|
|||
|
|
|||
|
with open(os.path.join(final_path, 'metadata.json'), 'w', encoding='utf-8') as f:
|
|||
|
json.dump(db_record, f, indent=4, ensure_ascii=False)
|
|||
|
|
|||
|
# 步骤5:将最终记录添加到数据库
|
|||
|
self.repository.add_model_version(db_record)
|
|||
|
|
|||
|
return final_path, db_record
|
|||
|
|
|||
|
def _get_scope_path_and_definition(self, ids: List[str]) -> Tuple[str, Dict]:
|
|||
|
"""根据ID列表获取路径片段和范围定义 (条件哈希)"""
|
|||
|
if len(ids) == 1:
|
|||
|
return ids[0], {'type': 'single', 'id': ids[0]}
|
|||
|
|
|||
|
# 只有当ID多于一个时才使用哈希
|
|||
|
hash_val = generate_hash(ids)
|
|||
|
return hash_val, {'type': 'hash', 'ids': sorted(ids)}
|
|||
|
|
|||
|
def _handle_product_training(self, payload: Dict[str, Any]) -> Tuple[str, Dict]:
|
|||
|
product_id = payload.get('product_id')
|
|||
|
if not product_id:
|
|||
|
raise ValueError("产品训练模式下 'product_id' 是必需的")
|
|||
|
model_type = payload['model_type']
|
|||
|
|
|||
|
model_base_path = os.path.join('product', product_id, model_type)
|
|||
|
next_version = self.version_manager.get_next_version(model_base_path.replace(os.sep, '/'))
|
|||
|
|
|||
|
final_path = os.path.join(self.base_path, model_base_path, f'v{next_version}')
|
|||
|
model_uid = str(uuid.uuid4())
|
|||
|
|
|||
|
db_record = {
|
|||
|
'model_uid': model_uid,
|
|||
|
'training_mode': 'product',
|
|||
|
'model_type': model_type,
|
|||
|
'version': next_version,
|
|||
|
'path': final_path,
|
|||
|
'scope': {'product_id': product_id},
|
|||
|
**payload.get('metrics', {})
|
|||
|
}
|
|||
|
return final_path, db_record
|
|||
|
|
|||
|
def _handle_store_training(self, payload: Dict[str, Any]) -> Tuple[str, Dict]:
|
|||
|
store_id = payload.get('store_id')
|
|||
|
if not store_id:
|
|||
|
raise ValueError("店铺训练模式下 'store_id' 是必需的")
|
|||
|
model_type = payload['model_type']
|
|||
|
|
|||
|
scope_path = store_id
|
|||
|
scope_definition = {'type': 'single', 'id': store_id}
|
|||
|
|
|||
|
model_base_path = os.path.join('store', scope_path, model_type)
|
|||
|
next_version = self.version_manager.get_next_version(model_base_path.replace(os.sep, '/'))
|
|||
|
|
|||
|
final_path = os.path.join(self.base_path, model_base_path, f'v{next_version}')
|
|||
|
model_uid = str(uuid.uuid4())
|
|||
|
|
|||
|
db_record = {
|
|||
|
'model_uid': model_uid,
|
|||
|
'training_mode': 'store',
|
|||
|
'model_type': model_type,
|
|||
|
'version': next_version,
|
|||
|
'path': final_path,
|
|||
|
'scope': scope_definition,
|
|||
|
**payload.get('metrics', {})
|
|||
|
}
|
|||
|
return final_path, db_record
|
|||
|
|
|||
|
def _handle_global_training(self, payload: Dict[str, Any]) -> Tuple[str, Dict]:
|
|||
|
store_ids = payload.get('store_ids', [])
|
|||
|
product_ids = payload.get('product_ids', [])
|
|||
|
model_type = payload['model_type']
|
|||
|
aggregation = payload.get('aggregation_method', 'all')
|
|||
|
|
|||
|
scope_path_parts = []
|
|||
|
scope_definition = {}
|
|||
|
|
|||
|
if store_ids:
|
|||
|
s_path, s_def = self._get_scope_path_and_definition(store_ids)
|
|||
|
scope_path_parts.append(f"S_{s_path}")
|
|||
|
scope_definition['stores'] = s_def
|
|||
|
|
|||
|
if product_ids:
|
|||
|
p_path, p_def = self._get_scope_path_and_definition(product_ids)
|
|||
|
scope_path_parts.append(f"P_{p_path}")
|
|||
|
scope_definition['products'] = p_def
|
|||
|
|
|||
|
scope_path = "_".join(scope_path_parts) if scope_path_parts else "all"
|
|||
|
|
|||
|
model_base_path = os.path.join('global', scope_path, aggregation, model_type)
|
|||
|
next_version = self.version_manager.get_next_version(model_base_path.replace(os.sep, '/'))
|
|||
|
|
|||
|
final_path = os.path.join(self.base_path, model_base_path, f'v{next_version}')
|
|||
|
model_uid = str(uuid.uuid4())
|
|||
|
|
|||
|
db_record = {
|
|||
|
'model_uid': model_uid,
|
|||
|
'training_mode': 'global',
|
|||
|
'model_type': model_type,
|
|||
|
'version': next_version,
|
|||
|
'path': final_path,
|
|||
|
'scope': scope_definition,
|
|||
|
'aggregation_method': aggregation,
|
|||
|
**payload.get('metrics', {})
|
|||
|
}
|
|||
|
return final_path, db_record
|