2025-06-18 06:39:41 +08:00
|
|
|
|
"""
|
|
|
|
|
药店销售预测系统 - KAN模型训练函数
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
import time
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import torch.optim as optim
|
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
from models.kan_model import KANForecaster
|
|
|
|
|
from models.optimized_kan_forecaster import OptimizedKANForecaster
|
|
|
|
|
from utils.data_utils import create_dataset, PharmacyDataset
|
|
|
|
|
from utils.visualization import plot_loss_curve
|
|
|
|
|
from analysis.metrics import evaluate_model
|
|
|
|
|
from core.config import DEVICE, DEFAULT_MODEL_DIR, LOOK_BACK, FORECAST_HORIZON
|
|
|
|
|
|
2025-07-02 11:05:23 +08:00
|
|
|
|
def train_product_model_with_kan(product_id, store_id=None, training_mode='product', aggregation_method='sum', epochs=50, use_optimized=False, model_dir=DEFAULT_MODEL_DIR):
|
2025-06-18 06:39:41 +08:00
|
|
|
|
"""
|
|
|
|
|
使用KAN模型训练产品销售预测模型
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
product_id: 产品ID
|
|
|
|
|
epochs: 训练轮次
|
|
|
|
|
use_optimized: 是否使用优化版KAN
|
|
|
|
|
model_dir: 模型保存目录,默认使用配置中的DEFAULT_MODEL_DIR
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
model: 训练好的模型
|
|
|
|
|
metrics: 模型评估指标
|
|
|
|
|
"""
|
2025-07-02 11:05:23 +08:00
|
|
|
|
# 根据训练模式加载数据
|
|
|
|
|
from utils.multi_store_data_utils import load_multi_store_data, get_store_product_sales_data, aggregate_multi_store_data
|
2025-06-18 06:39:41 +08:00
|
|
|
|
|
2025-07-02 11:05:23 +08:00
|
|
|
|
try:
|
|
|
|
|
if training_mode == 'store' and store_id:
|
|
|
|
|
# 加载特定店铺的数据
|
|
|
|
|
product_df = get_store_product_sales_data(
|
|
|
|
|
store_id,
|
|
|
|
|
product_id,
|
|
|
|
|
'pharmacy_sales_multi_store.csv'
|
|
|
|
|
)
|
|
|
|
|
training_scope = f"店铺 {store_id}"
|
|
|
|
|
elif training_mode == 'global':
|
|
|
|
|
# 聚合所有店铺的数据
|
|
|
|
|
product_df = aggregate_multi_store_data(
|
|
|
|
|
product_id,
|
|
|
|
|
aggregation_method=aggregation_method,
|
|
|
|
|
file_path='pharmacy_sales_multi_store.csv'
|
|
|
|
|
)
|
|
|
|
|
training_scope = f"全局聚合({aggregation_method})"
|
|
|
|
|
else:
|
|
|
|
|
# 默认:加载所有店铺的产品数据
|
|
|
|
|
product_df = load_multi_store_data('pharmacy_sales_multi_store.csv', product_id=product_id)
|
|
|
|
|
training_scope = "所有店铺"
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"多店铺数据加载失败: {e}")
|
|
|
|
|
# 后备方案:尝试原始数据
|
|
|
|
|
df = pd.read_excel('pharmacy_sales.xlsx')
|
|
|
|
|
product_df = df[df['product_id'] == product_id].sort_values('date')
|
|
|
|
|
training_scope = "原始数据"
|
|
|
|
|
|
|
|
|
|
if product_df.empty:
|
|
|
|
|
raise ValueError(f"产品 {product_id} 没有可用的销售数据")
|
|
|
|
|
|
|
|
|
|
# 数据量检查
|
|
|
|
|
min_required_samples = LOOK_BACK + FORECAST_HORIZON
|
|
|
|
|
if len(product_df) < min_required_samples:
|
|
|
|
|
error_msg = (
|
|
|
|
|
f"❌ 训练数据不足错误\n"
|
|
|
|
|
f"当前配置需要: {min_required_samples} 天数据 (LOOK_BACK={LOOK_BACK} + FORECAST_HORIZON={FORECAST_HORIZON})\n"
|
|
|
|
|
f"实际数据量: {len(product_df)} 天\n"
|
|
|
|
|
f"产品ID: {product_id}, 训练模式: {training_mode}\n"
|
|
|
|
|
f"建议解决方案:\n"
|
|
|
|
|
f"1. 生成更多数据: uv run generate_multi_store_data.py\n"
|
|
|
|
|
f"2. 调整配置参数: 减小 LOOK_BACK 或 FORECAST_HORIZON\n"
|
|
|
|
|
f"3. 使用全局训练模式聚合更多数据"
|
|
|
|
|
)
|
|
|
|
|
print(error_msg)
|
|
|
|
|
raise ValueError(error_msg)
|
|
|
|
|
|
|
|
|
|
product_df = product_df.sort_values('date')
|
2025-06-18 06:39:41 +08:00
|
|
|
|
product_name = product_df['product_name'].iloc[0]
|
|
|
|
|
|
|
|
|
|
model_type = "优化版KAN" if use_optimized else "KAN"
|
|
|
|
|
print(f"使用{model_type}模型训练产品 '{product_name}' (ID: {product_id}) 的销售预测模型")
|
2025-07-02 11:05:23 +08:00
|
|
|
|
print(f"训练范围: {training_scope}")
|
2025-06-18 06:39:41 +08:00
|
|
|
|
print(f"使用设备: {DEVICE}")
|
|
|
|
|
print(f"模型将保存到目录: {model_dir}")
|
|
|
|
|
|
|
|
|
|
# 创建特征和目标变量
|
|
|
|
|
features = ['sales', 'price', 'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature']
|
|
|
|
|
|
|
|
|
|
# 预处理数据
|
|
|
|
|
X = product_df[features].values
|
|
|
|
|
y = product_df[['sales']].values # 保持为二维数组
|
|
|
|
|
|
|
|
|
|
# 归一化数据
|
|
|
|
|
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
|
|
|
|
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
|
|
|
|
|
|
|
|
|
X_scaled = scaler_X.fit_transform(X)
|
|
|
|
|
y_scaled = scaler_y.fit_transform(y)
|
|
|
|
|
|
|
|
|
|
# 划分训练集和测试集(80% 训练,20% 测试)
|
|
|
|
|
train_size = int(len(X_scaled) * 0.8)
|
|
|
|
|
X_train, X_test = X_scaled[:train_size], X_scaled[train_size:]
|
|
|
|
|
y_train, y_test = y_scaled[:train_size], y_scaled[train_size:]
|
|
|
|
|
|
|
|
|
|
# 创建时间序列数据
|
|
|
|
|
trainX, trainY = create_dataset(X_train, y_train, LOOK_BACK, FORECAST_HORIZON)
|
|
|
|
|
testX, testY = create_dataset(X_test, y_test, LOOK_BACK, FORECAST_HORIZON)
|
|
|
|
|
|
|
|
|
|
# 转换为PyTorch的Tensor
|
|
|
|
|
trainX_tensor = torch.Tensor(trainX)
|
|
|
|
|
trainY_tensor = torch.Tensor(trainY)
|
|
|
|
|
testX_tensor = torch.Tensor(testX)
|
|
|
|
|
testY_tensor = torch.Tensor(testY)
|
|
|
|
|
|
|
|
|
|
# 创建数据加载器
|
|
|
|
|
train_dataset = PharmacyDataset(trainX_tensor, trainY_tensor)
|
|
|
|
|
test_dataset = PharmacyDataset(testX_tensor, testY_tensor)
|
|
|
|
|
|
|
|
|
|
batch_size = 32
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
|
|
|
|
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
|
|
|
|
|
|
|
|
|
# 初始化KAN模型
|
|
|
|
|
input_dim = X_train.shape[1]
|
|
|
|
|
output_dim = FORECAST_HORIZON
|
|
|
|
|
hidden_size = 64
|
|
|
|
|
|
|
|
|
|
if use_optimized:
|
|
|
|
|
model = OptimizedKANForecaster(
|
|
|
|
|
input_features=input_dim,
|
|
|
|
|
hidden_sizes=[hidden_size, hidden_size*2, hidden_size],
|
|
|
|
|
output_sequence_length=output_dim
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
model = KANForecaster(
|
|
|
|
|
input_features=input_dim,
|
|
|
|
|
hidden_sizes=[hidden_size, hidden_size*2, hidden_size],
|
|
|
|
|
output_sequence_length=output_dim
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 将模型移动到设备上
|
|
|
|
|
model = model.to(DEVICE)
|
|
|
|
|
|
|
|
|
|
criterion = nn.MSELoss()
|
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
|
|
# 训练模型
|
|
|
|
|
train_losses = []
|
|
|
|
|
test_losses = []
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
for epoch in range(epochs):
|
|
|
|
|
model.train()
|
|
|
|
|
epoch_loss = 0
|
|
|
|
|
for X_batch, y_batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}", leave=False):
|
|
|
|
|
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
|
|
|
|
|
|
|
|
|
# 确保目标张量有正确的形状 (batch_size, forecast_horizon, 1)
|
|
|
|
|
if y_batch.dim() == 2:
|
|
|
|
|
y_batch = y_batch.unsqueeze(-1)
|
|
|
|
|
|
|
|
|
|
# 前向传播
|
|
|
|
|
outputs = model(X_batch)
|
|
|
|
|
|
|
|
|
|
# 确保输出形状与目标匹配
|
|
|
|
|
if outputs.dim() == 2:
|
|
|
|
|
outputs = outputs.unsqueeze(-1)
|
|
|
|
|
|
|
|
|
|
loss = criterion(outputs, y_batch)
|
|
|
|
|
|
|
|
|
|
# 如果是KAN模型,加入正则化损失
|
|
|
|
|
if hasattr(model, 'regularization_loss'):
|
|
|
|
|
loss = loss + model.regularization_loss() * 0.01
|
|
|
|
|
|
|
|
|
|
# 反向传播和优化
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
loss.backward()
|
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
|
|
epoch_loss += loss.item()
|
|
|
|
|
|
|
|
|
|
# 计算训练损失
|
|
|
|
|
train_loss = epoch_loss / len(train_loader)
|
|
|
|
|
train_losses.append(train_loss)
|
|
|
|
|
|
|
|
|
|
# 在测试集上评估
|
|
|
|
|
model.eval()
|
|
|
|
|
test_loss = 0
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
for X_batch, y_batch in test_loader:
|
|
|
|
|
X_batch, y_batch = X_batch.to(DEVICE), y_batch.to(DEVICE)
|
|
|
|
|
|
|
|
|
|
# 确保目标张量有正确的形状
|
|
|
|
|
if y_batch.dim() == 2:
|
|
|
|
|
y_batch = y_batch.unsqueeze(-1)
|
|
|
|
|
|
|
|
|
|
outputs = model(X_batch)
|
|
|
|
|
|
|
|
|
|
# 确保输出形状与目标匹配
|
|
|
|
|
if outputs.dim() == 2:
|
|
|
|
|
outputs = outputs.unsqueeze(-1)
|
|
|
|
|
|
|
|
|
|
loss = criterion(outputs, y_batch)
|
|
|
|
|
test_loss += loss.item()
|
|
|
|
|
|
|
|
|
|
test_loss = test_loss / len(test_loader)
|
|
|
|
|
test_losses.append(test_loss)
|
|
|
|
|
|
|
|
|
|
if (epoch + 1) % 10 == 0:
|
|
|
|
|
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
|
|
|
|
|
|
|
|
|
|
# 计算训练时间
|
|
|
|
|
training_time = time.time() - start_time
|
|
|
|
|
|
|
|
|
|
# 绘制损失曲线并保存到模型目录
|
|
|
|
|
model_name = 'optimized_kan' if use_optimized else 'kan'
|
|
|
|
|
loss_curve_path = plot_loss_curve(
|
|
|
|
|
train_losses,
|
|
|
|
|
test_losses,
|
|
|
|
|
product_name,
|
|
|
|
|
model_type,
|
|
|
|
|
model_dir=model_dir
|
|
|
|
|
)
|
|
|
|
|
print(f"损失曲线已保存到: {loss_curve_path}")
|
|
|
|
|
|
|
|
|
|
# 评估模型
|
|
|
|
|
model.eval()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
test_pred = model(testX_tensor.to(DEVICE)).cpu().numpy()
|
|
|
|
|
|
|
|
|
|
# 处理输出形状
|
|
|
|
|
if len(test_pred.shape) == 3:
|
|
|
|
|
test_pred = test_pred.squeeze(-1)
|
|
|
|
|
|
|
|
|
|
# 反归一化预测结果和真实值
|
|
|
|
|
test_pred_inv = scaler_y.inverse_transform(test_pred.reshape(-1, 1)).flatten()
|
|
|
|
|
test_true_inv = scaler_y.inverse_transform(testY.reshape(-1, 1)).flatten()
|
|
|
|
|
|
|
|
|
|
# 计算评估指标
|
|
|
|
|
metrics = evaluate_model(test_true_inv, test_pred_inv)
|
|
|
|
|
metrics['training_time'] = training_time
|
|
|
|
|
|
|
|
|
|
# 打印评估指标
|
|
|
|
|
print("\n模型评估指标:")
|
|
|
|
|
print(f"MSE: {metrics['mse']:.4f}")
|
|
|
|
|
print(f"RMSE: {metrics['rmse']:.4f}")
|
|
|
|
|
print(f"MAE: {metrics['mae']:.4f}")
|
|
|
|
|
print(f"R²: {metrics['r2']:.4f}")
|
|
|
|
|
print(f"MAPE: {metrics['mape']:.2f}%")
|
|
|
|
|
print(f"训练时间: {training_time:.2f}秒")
|
|
|
|
|
|
2025-07-02 11:05:23 +08:00
|
|
|
|
# 使用统一模型管理器保存模型
|
|
|
|
|
from utils.model_manager import model_manager
|
2025-06-18 06:39:41 +08:00
|
|
|
|
|
2025-07-02 11:05:23 +08:00
|
|
|
|
model_type_name = 'optimized_kan' if use_optimized else 'kan'
|
2025-06-18 06:39:41 +08:00
|
|
|
|
|
2025-07-02 11:05:23 +08:00
|
|
|
|
model_data = {
|
2025-06-18 06:39:41 +08:00
|
|
|
|
'model_state_dict': model.state_dict(),
|
|
|
|
|
'scaler_X': scaler_X,
|
|
|
|
|
'scaler_y': scaler_y,
|
|
|
|
|
'config': {
|
|
|
|
|
'input_dim': input_dim,
|
|
|
|
|
'output_dim': output_dim,
|
|
|
|
|
'hidden_size': hidden_size,
|
|
|
|
|
'hidden_sizes': [hidden_size, hidden_size*2, hidden_size],
|
|
|
|
|
'sequence_length': LOOK_BACK,
|
|
|
|
|
'forecast_horizon': FORECAST_HORIZON,
|
2025-07-02 11:05:23 +08:00
|
|
|
|
'model_type': model_type_name,
|
2025-06-18 06:39:41 +08:00
|
|
|
|
'use_optimized': use_optimized
|
|
|
|
|
},
|
|
|
|
|
'metrics': metrics,
|
|
|
|
|
'loss_history': {
|
|
|
|
|
'train': train_losses,
|
|
|
|
|
'test': test_losses,
|
|
|
|
|
'epochs': list(range(1, epochs + 1))
|
|
|
|
|
},
|
|
|
|
|
'loss_curve_path': loss_curve_path
|
2025-07-02 11:05:23 +08:00
|
|
|
|
}
|
2025-06-18 06:39:41 +08:00
|
|
|
|
|
2025-07-02 11:05:23 +08:00
|
|
|
|
model_path = model_manager.save_model(
|
|
|
|
|
model_data=model_data,
|
|
|
|
|
product_id=product_id,
|
|
|
|
|
model_type=model_type_name,
|
|
|
|
|
version='v1', # KAN训练器默认使用v1
|
|
|
|
|
store_id=store_id,
|
|
|
|
|
training_mode=training_mode,
|
|
|
|
|
aggregation_method=aggregation_method,
|
|
|
|
|
product_name=product_name
|
|
|
|
|
)
|
2025-06-18 06:39:41 +08:00
|
|
|
|
|
|
|
|
|
return model, metrics
|