ShopTRAINING/server/utils/multi_store_data_utils.py

424 lines
15 KiB
Python
Raw Normal View History

2025-07-02 11:05:23 +08:00
"""
多店铺销售预测系统 - 数据处理工具函数
支持多店铺数据的加载过滤和处理
"""
import pandas as pd
import numpy as np
import os
from datetime import datetime, timedelta
from typing import Optional, List, Tuple, Dict, Any
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
from core.config import DEFAULT_DATA_PATH
2025-07-02 11:05:23 +08:00
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
def load_multi_store_data(file_path: str = None,
2025-07-02 11:05:23 +08:00
store_id: Optional[str] = None,
product_id: Optional[str] = None,
start_date: Optional[str] = None,
end_date: Optional[str] = None) -> pd.DataFrame:
"""
加载多店铺销售数据支持按店铺产品时间范围过滤
参数:
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
file_path: 数据文件路径 (支持 .csv, .xlsx, .parquet)如果为None则使用config中定义的默认路径
2025-07-02 11:05:23 +08:00
store_id: 店铺ID为None时返回所有店铺数据
product_id: 产品ID为None时返回所有产品数据
start_date: 开始日期 (YYYY-MM-DD)
end_date: 结束日期 (YYYY-MM-DD)
返回:
DataFrame: 过滤后的销售数据
"""
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
# 如果未提供文件路径,则使用配置文件中的默认路径
if file_path is None:
file_path = DEFAULT_DATA_PATH
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
if not os.path.exists(file_path):
raise FileNotFoundError(f"数据文件不存在: {file_path}")
try:
if file_path.endswith('.csv'):
df = pd.read_csv(file_path)
elif file_path.endswith('.xlsx'):
df = pd.read_excel(file_path)
elif file_path.endswith('.parquet'):
df = pd.read_parquet(file_path)
else:
raise ValueError(f"不支持的文件格式: {file_path}")
print(f"成功加载数据文件: {file_path}")
except Exception as e:
print(f"加载文件 {file_path} 失败: {e}")
raise
2025-07-02 11:05:23 +08:00
# 按店铺过滤
if store_id:
df = df[df['store_id'] == store_id].copy()
print(f"按店铺过滤: {store_id}, 剩余记录数: {len(df)}")
# 按产品过滤
if product_id:
df = df[df['product_id'] == product_id].copy()
print(f"按产品过滤: {product_id}, 剩余记录数: {len(df)}")
# 标准化列名和数据类型
df = standardize_column_names(df)
# 在标准化之后进行时间范围过滤
2025-07-02 11:05:23 +08:00
if start_date:
try:
start_date_dt = pd.to_datetime(start_date)
# 确保比较是在datetime对象之间
if 'date' in df.columns:
df = df[df['date'] >= start_date_dt].copy()
print(f"开始日期过滤: {start_date_dt}, 剩余记录数: {len(df)}")
except (ValueError, TypeError):
print(f"警告: 无效的开始日期格式 '{start_date}',已忽略。")
2025-07-02 11:05:23 +08:00
if end_date:
try:
end_date_dt = pd.to_datetime(end_date)
# 确保比较是在datetime对象之间
if 'date' in df.columns:
df = df[df['date'] <= end_date_dt].copy()
print(f"结束日期过滤: {end_date_dt}, 剩余记录数: {len(df)}")
except (ValueError, TypeError):
print(f"警告: 无效的结束日期格式 '{end_date}',已忽略。")
2025-07-02 11:05:23 +08:00
if len(df) == 0:
print("警告: 过滤后没有数据")
return df
def standardize_column_names(df: pd.DataFrame) -> pd.DataFrame:
"""
标准化列名以匹配训练代码和API期望的格式
2025-07-02 11:05:23 +08:00
参数:
df: 原始DataFrame
返回:
DataFrame: 标准化列名后的DataFrame
"""
df = df.copy()
# 定义列名映射并强制重命名
rename_map = {
'sales_quantity': 'sales', # 修复:匹配原始列名
'temperature_2m_mean': 'temperature', # 新增:处理温度列
'dayofweek': 'weekday' # 修复:匹配原始列名
2025-07-02 11:05:23 +08:00
}
df.rename(columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True)
2025-07-02 11:05:23 +08:00
# 确保date列是datetime类型
2025-07-02 11:05:23 +08:00
if 'date' in df.columns:
df['date'] = pd.to_datetime(df['date'], errors='coerce')
df.dropna(subset=['date'], inplace=True) # 移除无法解析的日期行
else:
# 如果没有date列无法继续返回空DataFrame
return pd.DataFrame()
# 计算 sales_amount
# 由于没有price列sales_amount的计算逻辑需要调整或移除
# 这里我们注释掉它因为原始数据中已有sales_amount
# if 'sales_amount' not in df.columns and 'sales' in df.columns and 'price' in df.columns:
# # 先确保sales和price是数字
# df['sales'] = pd.to_numeric(df['sales'], errors='coerce')
# df['price'] = pd.to_numeric(df['price'], errors='coerce')
# df['sales_amount'] = df['sales'] * df['price']
# 创建缺失的特征列
if 'weekday' not in df.columns:
df['weekday'] = df['date'].dt.dayofweek
if 'month' not in df.columns:
df['month'] = df['date'].dt.month
# 添加缺失的元数据列
meta_columns = {
'store_name': 'Unknown Store',
'store_location': 'Unknown Location',
'store_type': 'Unknown',
'product_name': 'Unknown Product',
'product_category': 'Unknown Category'
}
for col, default in meta_columns.items():
if col not in df.columns:
df[col] = default
# 添加缺失的布尔特征列
2025-07-02 11:05:23 +08:00
default_features = {
'is_holiday': False,
'is_weekend': None,
'is_promotion': False,
'temperature': 20.0
2025-07-02 11:05:23 +08:00
}
for feature, default_value in default_features.items():
if feature not in df.columns:
if feature == 'is_weekend':
2025-07-02 11:05:23 +08:00
df['is_weekend'] = df['weekday'].isin([5, 6])
else:
df[feature] = default_value
# 确保数值类型正确
numeric_columns = ['sales', 'sales_amount', 'weekday', 'month', 'temperature']
2025-07-02 11:05:23 +08:00
for col in numeric_columns:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# 确保布尔类型正确
boolean_columns = ['is_holiday', 'is_weekend', 'is_promotion']
for col in boolean_columns:
if col in df.columns:
df[col] = df[col].astype(bool)
print(f"数据标准化完成,可用特征列: {[col for col in ['sales', 'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature'] if col in df.columns]}")
2025-07-02 11:05:23 +08:00
return df
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
def get_available_stores(file_path: str = None) -> List[Dict[str, Any]]:
2025-07-02 11:05:23 +08:00
"""
获取可用的店铺列表
参数:
file_path: 数据文件路径
返回:
List[Dict]: 店铺信息列表
"""
try:
df = load_multi_store_data(file_path)
if 'store_id' not in df.columns:
print("数据文件中缺少 'store_id'")
return []
# 智能地获取店铺信息,即使某些列缺失
store_info = []
2025-07-02 11:05:23 +08:00
# 使用drop_duplicates获取唯一的店铺组合
stores_df = df.drop_duplicates(subset=['store_id'])
for _, row in stores_df.iterrows():
store_info.append({
'store_id': row['store_id'],
'store_name': row.get('store_name', f"店铺 {row['store_id']}"),
'location': row.get('store_location', '未知位置'),
'type': row.get('store_type', '标准'),
'opening_date': row.get('opening_date', '未知'),
})
return store_info
2025-07-02 11:05:23 +08:00
except Exception as e:
print(f"获取店铺列表失败: {e}")
return []
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
def get_available_products(file_path: str = None,
2025-07-02 11:05:23 +08:00
store_id: Optional[str] = None) -> List[Dict[str, Any]]:
"""
获取可用的产品列表
参数:
file_path: 数据文件路径
store_id: 店铺ID为None时返回所有产品
返回:
List[Dict]: 产品信息列表
"""
try:
df = load_multi_store_data(file_path, store_id=store_id)
# 获取唯一产品信息
product_columns = ['product_id', 'product_name']
if 'product_category' in df.columns:
product_columns.append('product_category')
if 'unit_price' in df.columns:
product_columns.append('unit_price')
products = df[product_columns].drop_duplicates()
return products.to_dict('records')
except Exception as e:
print(f"获取产品列表失败: {e}")
return []
def get_store_product_sales_data(store_id: str,
product_id: str,
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
file_path: str = None) -> pd.DataFrame:
2025-07-02 11:05:23 +08:00
"""
获取特定店铺和产品的销售数据用于模型训练
参数:
file_path: 数据文件路径
store_id: 店铺ID
product_id: 产品ID
返回:
DataFrame: 处理后的销售数据包含模型需要的特征
"""
# 加载数据
df = load_multi_store_data(file_path, store_id=store_id, product_id=product_id)
if len(df) == 0:
raise ValueError(f"没有找到店铺 {store_id} 产品 {product_id} 的销售数据")
# 确保数据按日期排序
df = df.sort_values('date').copy()
# 数据标准化已在load_multi_store_data中完成
# 验证必要的列是否存在
--- **日期**: 2025-07-18 **主题**: 模型保存逻辑重构与集中化管理 ### 目标 根据 `xz训练模型保存规则.md`,将系统中分散的模型文件保存逻辑统一重构,创建一个集中、健壮且可测试的路径管理系统。 ### 核心成果 1. **创建了 `server/utils/file_save.py` 模块**: 这个新模块现在是系统中处理模型文件保存路径的唯一权威来源。 2. **实现了三种训练模式的路径生成**: 系统现在可以为“按店铺”、“按药品”和“全局”三种训练模式正确生成层级化的、可追溯的目录结构。 3. **集成了智能ID处理**: * 对于包含**多个ID**的训练场景,系统会自动计算一个简短的哈希值作为目录名。 * 对于全局训练中只包含**单个店铺或药品ID**的场景,系统会直接使用该ID作为目录名,增强了路径的可读性。 4. **重构了整个训练流程**: 修改了API层、进程管理层以及所有模型训练器,使它们能够协同使用新的路径管理模块。 5. **添加了自动化测试**: 创建了 `test/test_file_save_logic.py` 脚本,用于验证所有路径生成和版本管理逻辑的正确性。 ### 详细文件修改记录 1. **`server/utils/file_save.py`** * **操作**: 创建 * **内容**: 实现了 `ModelPathManager` 类,包含以下核心方法: * `_hash_ids`: 对ID列表进行排序和哈希。 * `_generate_identifier`: 根据训练模式和参数生成唯一的模型标识符。 * `get_next_version` / `save_version_info`: 线程安全地管理 `versions.json` 文件,实现版本号的获取和更新。 * `get_model_paths`: 作为主入口,协调以上方法,生成包含所有产物路径的字典。 2. **`server/api.py`** * **操作**: 修改 * **位置**: `start_training` 函数 (`/api/training` 端点)。 * **内容**: * 导入并实例化 `ModelPathManager`。 * 在接收到训练请求后,调用 `path_manager.get_model_paths()` 来获取所有路径信息。 * 将获取到的 `path_info` 字典和原始请求参数 `training_params` 一并传递给后台训练任务管理器。 * 修复了因重复传递关键字参数 (`model_type`, `training_mode`) 导致的 `TypeError`。 * 修复了 `except` 块中因未导入 `traceback` 模块导致的 `UnboundLocalError`。 3. **`server/utils/training_process_manager.py`** * **操作**: 修改 * **内容**: * 修改 `submit_task` 方法,使其能接收 `training_params` 和 `path_info` 字典。 * 在 `TrainingTask` 数据类中增加了 `path_info` 字段来存储路径信息。 * 在 `TrainingWorker` 中,将 `path_info` 传递给实际的训练函数。 * 在 `_monitor_results` 方法中,当任务成功完成时,调用 `path_manager.save_version_info` 来更新 `versions.json`,完成版本管理的闭环。 4. **所有训练器文件** (`mlstm_trainer.py`, `kan_trainer.py`, `tcn_trainer.py`, `transformer_trainer.py`) * **操作**: 修改 * **内容**: * 统一修改了主训练函数的签名,增加了 `path_info=None` 参数。 * 移除了所有内部手动构建文件路径的逻辑。 * 所有保存操作(最终模型、检查点、损失曲线图)现在都直接从传入的 `path_info` 字典中获取预先生成好的路径。 * 简化了 `save_checkpoint` 辅助函数,使其也依赖 `path_info`。 5. **`test/test_file_save_logic.py`** * **操作**: 创建 * **内容**: * 编写了一个独立的测试脚本,用于验证 `ModelPathManager` 的所有功能。 * 覆盖了所有训练模式及其子场景(包括单ID和多ID哈希)。 * 测试了版本号的正确递增和 `versions.json` 的写入。 * 修复了测试脚本中因绝对/相对路径不匹配和重复关键字参数导致的多个 `AssertionError` 和 `TypeError`。 --- **日期**: 2025-07-18 (后续修复) **主题**: 修复API层调用路径管理器时的 `TypeError` ### 问题描述 在完成所有重构和测试后,实际运行API时,`POST /api/training` 端点在调用 `path_manager.get_model_paths` 时崩溃,并抛出 `TypeError: get_model_paths() got multiple values for keyword argument 'training_mode'`。 ### 根本原因 这是一个回归错误。在修复测试脚本 `test_file_save_logic.py` 中的类似问题时,我未能将相同的修复逻辑应用回 `server/api.py`。代码在调用 `get_model_paths` 时,既通过关键字参数 `training_mode=...` 明确传递了该参数,又通过 `**data` 将其再次传入,导致了冲突。 ### 解决方案 1. **文件**: `server/api.py` 2. **位置**: `start_training` 函数。 3. **操作**: 修改了对 `get_model_paths` 的调用逻辑。 4. **内容**: ```python # 移除 model_type 和 training_mode 以避免重复关键字参数错误 data_for_path = data.copy() data_for_path.pop('model_type', None) data_for_path.pop('training_mode', None) path_info = path_manager.get_model_paths( training_mode=training_mode, model_type=model_type, **data_for_path # 传递剩余的payload ) ``` 5. **原因**: 在通过 `**` 解包传递参数之前,先从字典副本中移除了所有会被明确指定的关键字参数,从而确保了函数调用签名的正确性。 --- **日期**: 2025-07-18 (最终修复) **主题**: 修复因中间层函数签名未更新导致的 `TypeError` ### 问题描述 在完成所有重构后,实际运行API并触发训练任务时,程序在后台进程中因 `TypeError: train_model() got an unexpected keyword argument 'path_info'` 而崩溃。 ### 根本原因 这是一个典型的“中间人”遗漏错误。我成功地修改了调用链的两端(`api.py` -> `training_process_manager.py` 和 `*_trainer.py`),但忘记了修改它们之间的中间层——`server/core/predictor.py` 中的 `train_model` 方法。`training_process_manager` 尝试将 `path_info` 传递给 `predictor.train_model`,但后者的函数签名中并未包含这个新参数,导致了 `TypeError`。 ### 解决方案 1. **文件**: `server/core/predictor.py` 2. **位置**: `train_model` 函数的定义处。 3. **操作**: 在函数签名中增加了 `path_info=None` 参数。 4. **内容**: ```python def train_model(self, ..., progress_callback=None, path_info=None): # ... ``` 5. **位置**: `train_model` 函数内部,对所有具体训练器(`train_product_model_with_mlstm`, `_with_kan`, etc.)的调用处。 6. **操作**: 在所有调用中,将接收到的 `path_info` 参数透传下去。 7. **内容**: ```python # ... metrics = train_product_model_with_transformer( ..., path_info=path_info ) # ... ``` 8. **原因**: 通过在中间层函数上“打通”`path_info` 参数的传递通道,确保了从API层到最终训练器层的完整数据流,解决了 `TypeError`。 --- **日期**: 2025-07-18 (最终修复) **主题**: 修复“按药品训练-聚合所有店铺”模式下的路径生成错误 ### 问题描述 在实际运行中发现,当进行“按药品训练”并选择“聚合所有店铺”时,生成的模型保存路径中包含了错误的后缀 `_None`,而不是预期的 `_all` (例如 `.../17002608_None/...`)。 ### 根本原因 在 `server/utils/file_save.py` 的 `_generate_identifier` 和 `get_model_paths` 方法中,当 `store_id` 从前端传来为 `None` 时,代码 `scope = store_id if store_id else 'all'` 会因为 `store_id` 是 `None` 而正确地将 `scope` 设为 `'all'`。然而,在 `get_model_paths` 方法中,我错误地使用了 `kwargs.get('store_id', 'all')`,这在 `store_id` 键存在但值为 `None` 时,仍然会返回 `None`,导致了路径拼接错误。 ### 解决方案 1. **文件**: `server/utils/file_save.py` 2. **位置**: `_generate_identifier` 和 `get_model_paths` 方法中处理 `product` 训练模式的部分。 3. **操作**: 将逻辑从 `scope = kwargs.get('store_id', 'all')` 修改为更严谨的 `scope = store_id if store_id is not None else 'all'`。 4. **内容**: ```python # in _generate_identifier scope = store_id if store_id is not None else 'all' # in get_model_paths store_id = kwargs.get('store_id') scope = store_id if store_id is not None else 'all' scope_folder = f"{product_id}_{scope}" ``` 5. **原因**: 这种写法能正确处理 `store_id` 键不存在、或键存在但值为 `None` 的两种情况,确保在这两种情况下 `scope` 都被正确地设置为 `'all'`,从而生成符合规范的路径。 --- **日期**: 2025-07-18 (最终修复) **主题**: 修复 `KeyError: 'price'` 和单ID哈希错误 ### 问题描述 在完成大规模重构后,实际运行时发现了两个隐藏的bug: 1. 在“按店铺训练”模式下,训练因 `KeyError: 'price'` 而失败。 2. 在“按店铺训练”模式下,当只选择一个“指定药品”时,系统仍然错误地对该药品的ID进行了哈希处理,而不是直接使用ID。 ### 根本原因 1. **`KeyError`**: `server/utils/multi_store_data_utils.py` 中的 `get_store_product_sales_data` 函数包含了一个硬编码的列校验,该校验要求 `price` 列必须存在,但这与当前的数据源不符。 2. **哈希错误**: `server/utils/file_save.py` 中的 `get_model_paths` 方法在处理 `store` 训练模式时,没有复用 `_generate_identifier` 中已经写好的单ID判断逻辑,导致了逻辑不一致。 ### 解决方案 1. **修复 `KeyError`**: * **文件**: `server/utils/multi_store_data_utils.py` * **位置**: `get_store_product_sales_data` 函数。 * **操作**: 从 `required_columns` 列表中移除了 `'price'`,根除了这个硬性依赖。 2. **修复哈希逻辑**: * **文件**: `server/utils/file_save.py` * **位置**: `_generate_identifier` 和 `get_model_paths` 方法中处理 `store` 训练模式的部分。 * **操作**: 统一了逻辑,确保在这两个地方都使用了 `scope = product_ids[0] if len(product_ids) == 1 else self._hash_ids(product_ids)` 的判断,从而在只选择一个药品时直接使用其ID。 3. **更新测试**: * **文件**: `test/test_file_save_logic.py` * **操作**: 增加了新的测试用例,专门验证“按店铺训练-单个指定药品”场景下的路径生成是否正确。 --- **日期**: 2025-07-18 (最终修复) **主题**: 修复全局训练范围值不匹配导致的 `ValueError` ### 问题描述 在完成所有重构后,实际运行API并触发“全局训练-所有店铺所有药品”时,程序因 `ValueError: 未知的全局训练范围: all_stores_all_products` 而崩溃。 ### 根本原因 前端传递的 `training_scope` 值为 `all_stores_all_products`,而 `server/utils/file_save.py` 中的 `_generate_identifier` 和 `get_model_paths` 方法只处理了 `all` 这个值,未能兼容前端传递的具体字符串,导致逻辑判断失败。 ### 解决方案 1. **文件**: `server/utils/file_save.py` 2. **位置**: `_generate_identifier` 和 `get_model_paths` 方法中处理 `global` 训练模式的部分。 3. **操作**: 将逻辑判断从 `if training_scope == 'all':` 修改为 `if training_scope in ['all', 'all_stores_all_products']:`。 4. **原因**: 使代码能够同时兼容两种表示“所有范围”的字符串,确保了前端请求的正确处理。 5. **更新测试**: * **文件**: `test/test_file_save_logic.py` * **操作**: 增加了新的测试用例,专门验证 `training_scope` 为 `all_stores_all_products` 时的路径生成是否正确。 --- **日期**: 2025-07-18 (最终优化) **主题**: 优化全局训练自定义模式下的单ID路径生成 ### 问题描述 根据用户反馈,希望在全局训练的“自定义范围”模式下,如果只选择单个店铺和/或单个药品,路径中应直接使用ID而不是哈希值,以增强可读性。 ### 解决方案 1. **文件**: `server/utils/file_save.py` 2. **位置**: `_generate_identifier` 和 `get_model_paths` 方法中处理 `global` 训练模式 `custom` 范围的部分。 3. **操作**: 为 `store_ids` 和 `product_ids` 分别增加了单ID判断逻辑。 4. **内容**: ```python # in _generate_identifier s_id = store_ids[0] if len(store_ids) == 1 else self._hash_ids(store_ids) p_id = product_ids[0] if len(product_ids) == 1 else self._hash_ids(product_ids) scope_part = f"custom_s_{s_id}_p_{p_id}" # in get_model_paths store_ids = kwargs.get('store_ids', []) product_ids = kwargs.get('product_ids', []) s_id = store_ids[0] if len(store_ids) == 1 else self._hash_ids(store_ids) p_id = product_ids[0] if len(product_ids) == 1 else self._hash_ids(product_ids) scope_parts.extend(['custom', s_id, p_id]) ``` 5. **原因**: 使 `custom` 模式下的路径生成逻辑与 `selected_stores` 和 `selected_products` 模式保持一致,在只选择一个ID时优先使用ID本身,提高了路径的可读性和一致性。 6. **更新测试**: * **文件**: `test/test_file_save_logic.py` * **操作**: 增加了新的测试用例,专门验证“全局训练-自定义范围-单ID”场景下的路径生成是否正确。
2025-07-18 16:45:21 +08:00
required_columns = ['sales', 'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature']
2025-07-02 11:05:23 +08:00
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
print(f"警告: 数据标准化后仍缺少列 {missing_columns}")
raise ValueError(f"无法获取完整的特征数据,缺少列: {missing_columns}")
# 定义模型训练所需的所有列(特征 + 目标)
final_columns = [
'date', 'sales', 'product_id', 'product_name', 'store_id', 'store_name',
'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature'
]
# 筛选出DataFrame中实际存在的列
existing_columns = [col for col in final_columns if col in df.columns]
# 返回只包含这些必需列的DataFrame
return df[existing_columns]
2025-07-02 11:05:23 +08:00
def aggregate_multi_store_data(product_id: Optional[str] = None,
store_id: Optional[str] = None,
aggregation_method: str = 'sum',
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
file_path: str = None) -> pd.DataFrame:
2025-07-02 11:05:23 +08:00
"""
聚合销售数据可按产品全局或按店铺所有产品
2025-07-02 11:05:23 +08:00
参数:
file_path: 数据文件路径
product_id: 产品ID (用于全局模型)
store_id: 店铺ID (用于店铺聚合模型)
2025-07-02 11:05:23 +08:00
aggregation_method: 聚合方法 ('sum', 'mean', 'median')
返回:
DataFrame: 聚合后的销售数据
"""
# 根据是全局聚合、店铺聚合还是真正全局聚合来加载数据
if store_id:
# 店铺聚合:加载该店铺的所有数据
df = load_multi_store_data(file_path, store_id=store_id)
if len(df) == 0:
raise ValueError(f"没有找到店铺 {store_id} 的销售数据")
grouping_entity = f"店铺 {store_id}"
elif product_id:
# 按产品聚合:加载该产品在所有店铺的数据
df = load_multi_store_data(file_path, product_id=product_id)
if len(df) == 0:
raise ValueError(f"没有找到产品 {product_id} 的销售数据")
grouping_entity = f"产品 {product_id}"
else:
# 真正全局聚合:加载所有数据
df = load_multi_store_data(file_path)
if len(df) == 0:
raise ValueError("数据文件为空,无法进行全局聚合")
grouping_entity = "所有产品"
2025-07-02 11:05:23 +08:00
# 按日期聚合(使用标准化后的列名)
agg_dict = {}
if aggregation_method == 'sum':
agg_dict = {
'sales': 'sum', # 标准化后的销量列
'sales_amount': 'sum',
'price': 'mean' # 标准化后的价格列,取平均值
}
elif aggregation_method == 'mean':
agg_dict = {
'sales': 'mean',
'sales_amount': 'mean',
'price': 'mean'
}
elif aggregation_method == 'median':
agg_dict = {
'sales': 'median',
'sales_amount': 'median',
'price': 'median'
}
# 确保列名存在
available_cols = df.columns.tolist()
agg_dict = {k: v for k, v in agg_dict.items() if k in available_cols}
# 聚合数据
aggregated_df = df.groupby('date').agg(agg_dict).reset_index()
# 获取产品信息(取第一个店铺的信息)
product_info = df[['product_id', 'product_name', 'product_category']].iloc[0]
for col, val in product_info.items():
aggregated_df[col] = val
# 添加店铺信息标识为全局
aggregated_df['store_id'] = 'GLOBAL'
aggregated_df['store_name'] = f'全部店铺-{aggregation_method.upper()}'
aggregated_df['store_location'] = '全局聚合'
aggregated_df['store_type'] = 'global'
# 对聚合后的数据进行标准化(添加缺失的特征列)
aggregated_df = aggregated_df.sort_values('date').copy()
aggregated_df = standardize_column_names(aggregated_df)
# 定义模型训练所需的所有列(特征 + 目标)
final_columns = [
'date', 'sales', 'product_id', 'product_name', 'store_id', 'store_name',
'weekday', 'month', 'is_holiday', 'is_weekend', 'is_promotion', 'temperature'
]
# 筛选出DataFrame中实际存在的列
existing_columns = [col for col in final_columns if col in aggregated_df.columns]
# 返回只包含这些必需列的DataFrame
return aggregated_df[existing_columns]
2025-07-02 11:05:23 +08:00
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
def get_sales_statistics(file_path: str = None,
2025-07-02 11:05:23 +08:00
store_id: Optional[str] = None,
product_id: Optional[str] = None) -> Dict[str, Any]:
"""
获取销售数据统计信息
参数:
file_path: 数据文件路径
store_id: 店铺ID
product_id: 产品ID
返回:
Dict: 统计信息
"""
try:
df = load_multi_store_data(file_path, store_id=store_id, product_id=product_id)
if len(df) == 0:
return {'error': '没有数据'}
stats = {
'total_records': len(df),
'date_range': {
'start': df['date'].min().strftime('%Y-%m-%d'),
'end': df['date'].max().strftime('%Y-%m-%d')
},
'stores': df['store_id'].nunique(),
'products': df['product_id'].nunique(),
'total_sales_amount': float(df['sales_amount'].sum()) if 'sales_amount' in df.columns else 0,
'total_quantity': int(df['quantity_sold'].sum()) if 'quantity_sold' in df.columns else 0,
'avg_daily_sales': float(df.groupby('date')['quantity_sold'].sum().mean()) if 'quantity_sold' in df.columns else 0
}
return stats
except Exception as e:
return {'error': str(e)}
# 向后兼容的函数
**日期**: 2025-07-14 **主题**: UI导航栏重构 ### 描述 根据用户请求,对左侧功能导航栏进行了调整。 ### 主要改动 1. **删除“数据管理”**: * 从 `UI/src/App.vue` 的导航菜单中移除了“数据管理”项。 * 从 `UI/src/router/index.js` 中删除了对应的 `/data` 路由。 * 删除了视图文件 `UI/src/views/DataView.vue`。 2. **提升“店铺管理”**: * 将“店铺管理”菜单项在 `UI/src/App.vue` 中的位置提升,以填补原“数据管理”的位置,使其在导航中更加突出。 ### 涉及文件 * `UI/src/App.vue` * `UI/src/router/index.js` * `UI/src/views/DataView.vue` (已删除) **按药品模型预测** --- **日期**: 2025-07-14 **主题**: 修复导航菜单高亮问题 ### 描述 修复了首次进入或刷新页面时,左侧导航菜单项与当前路由不匹配导致不高亮的问题。 ### 主要改动 * **文件**: `UI/src/App.vue` * **修改**: 1. 引入 `useRoute` 和 `computed`。 2. 创建了一个计算属性 `activeMenu`,其值动态地等于当前路由的路径 (`route.path`)。 3. 将 `el-menu` 组件的 `:default-active` 属性绑定到 `activeMenu`。 ### 结果 确保了导航菜单的高亮状态始终与当前页面的URL保持同步。 --- **日期**: 2025-07-15 **主题**: 修复硬编码文件路径问题,提高项目可移植性 ### 问题描述 项目在从一台计算机迁移到另一台时,由于数据文件路径被硬编码在代码中,导致程序无法找到数据文件而运行失败。 ### 根本原因 多个Python文件(`predictor.py`, `multi_store_data_utils.py`)中直接写入了相对路径 `'data/timeseries_training_data_sample_10s50p.parquet'` 作为默认值。这种方式在不同运行环境下(如从根目录运行 vs 从子目录运行)会产生路径解析错误。 ### 解决方案:集中配置,统一管理 1. **修改 `server/core/config.py` (核心)**: * 动态计算并定义了一个全局变量 `PROJECT_ROOT`,它始终指向项目的根目录。 * 基于 `PROJECT_ROOT`,使用 `os.path.join` 创建了一个跨平台的、绝对的默认数据路径 `DEFAULT_DATA_PATH` 和模型保存路径 `DEFAULT_MODEL_DIR`。 * 这确保了无论从哪个位置执行代码,路径总能被正确解析。 2. **修改 `server/utils/multi_store_data_utils.py`**: * 从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 将所有数据加载函数的 `file_path` 参数的默认值从硬编码的字符串改为 `None`。 * 在函数内部,如果 `file_path` 为 `None`,则自动使用导入的 `DEFAULT_DATA_PATH`。 * 移除了原有的、复杂的、为了猜测正确路径而编写的冗余代码。 3. **修改 `server/core/predictor.py`**: * 同样从 `server/core/config` 导入 `DEFAULT_DATA_PATH`。 * 在初始化 `PharmacyPredictor` 时,如果未提供数据路径,则使用导入的 `DEFAULT_DATA_PATH` 作为默认值。 ### 最终结果 通过将数据源路径集中到唯一的配置文件中进行管理,彻底解决了因硬编码路径导致的可移植性问题。项目现在可以在任何环境下可靠地运行。 --- ### 未来如何修改数据源(例如,连接到服务器数据库) 本次重构为将来更换数据源打下了坚实的基础。操作非常简单: 1. **定位配置文件**: 打开 `server/core/config.py` 文件。 2. **修改数据源定义**: * **当前 (文件)**: ```python DEFAULT_DATA_PATH = os.path.join(PROJECT_ROOT, 'data', 'timeseries_training_data_sample_10s50p.parquet') ``` * **未来 (数据库示例)**: 您可以将这行替换为数据库连接字符串,或者添加新的数据库配置变量。例如: ```python # 注释掉或删除旧的文件路径配置 # DEFAULT_DATA_PATH = ... # 新增数据库连接配置 DATABASE_URL = "postgresql://user:password@your_server_ip:5432/your_database_name" ``` 3. **修改数据加载逻辑**: * **定位数据加载函数**: 打开 `server/utils/multi_store_data_utils.py`。 * **修改 `load_multi_store_data` 函数**: * 引入数据库连接库(如 `sqlalchemy` 或 `psycopg2`)。 * 修改函数逻辑,使其使用 `config.py` 中的 `DATABASE_URL` 来连接数据库,并执行SQL查询来获取数据,而不是读取文件。 * **示例**: ```python from sqlalchemy import create_engine from core.config import DATABASE_URL # 导入新的数据库配置 def load_multi_store_data(...): # ... engine = create_engine(DATABASE_URL) query = "SELECT * FROM sales_data" # 根据需要构建查询 df = pd.read_sql(query, engine) # ... 后续处理逻辑保持不变 ... ```
2025-07-15 10:37:25 +08:00
def load_data(file_path=None, store_id=None):
2025-07-02 11:05:23 +08:00
"""
向后兼容的数据加载函数
"""
return load_multi_store_data(file_path, store_id=store_id)