ShopTRAINING/server/utils/data_utils.py

166 lines
5.8 KiB
Python
Raw Normal View History

"""
药店销售预测系统 - 数据处理工具函数
"""
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
class PharmacyDataset(Dataset):
"""
药店销售数据集类用于PyTorch数据加载
"""
def __init__(self, data_X, data_Y):
self.data_X = data_X
self.data_Y = data_Y
def __getitem__(self, index):
return self.data_X[index], self.data_Y[index]
def __len__(self):
return len(self.data_X)
def create_dataset(datasetX, datasetY, look_back=1, predict_steps=1):
"""
将时间序列数据转换为监督学习问题的格式
参数:
datasetX: 输入特征数据
datasetY: 目标变量数据
look_back: 使用过去多少天的数据作为输入
predict_steps: 预测未来多少天的数据
返回:
dataX: 输入特征形状为 (样本数, 时间步, 特征数)
dataY: 目标变量形状为 (样本数, 预测步数)
"""
dataX, dataY = [], []
for i in range(len(datasetX) - look_back - predict_steps + 1):
x = datasetX[i:(i + look_back)]
dataX.append(x)
y = datasetY[(i + look_back):(i + look_back + predict_steps)]
dataY.append(y.flatten())
return np.array(dataX), np.array(dataY)
def prepare_data(training_df, feature_list, target_column, sequence_length=30, forecast_horizon=7):
"""
准备训练和验证数据 (已重构以适应新数据管道)
参数:
training_df: 包含所有数据的DataFrame
feature_list: 用于训练的特征列名列表
target_column: 目标变量的列名
sequence_length: 输入序列长度
forecast_horizon: 预测天数
返回:
X, y: 全部特征和目标
X_train, X_val: 训练和验证特征
y_train, y_val: 训练和验证目标
scaler_X, scaler_y: 特征和目标的归一化器
"""
# 确保所有特征列都是数值类型,非数值列将被忽略
numeric_features = training_df[feature_list].select_dtypes(include=np.number).columns.tolist()
if not numeric_features:
raise ValueError("在提供的feature_list中没有找到任何数值类型的特征。")
# 预处理数据
X_raw = training_df[numeric_features].values
y_raw = training_df[[target_column]].values # 保持为二维数组
# 归一化数据
scaler_X = MinMaxScaler(feature_range=(0, 1))
scaler_y = MinMaxScaler(feature_range=(0, 1))
X_scaled = scaler_X.fit_transform(X_raw)
y_scaled = scaler_y.fit_transform(y_raw)
# 检查并修复归一化后可能出现的NaN或inf
if np.isnan(X_scaled).any() or np.isinf(X_scaled).any():
print("⚠️ 警告: 特征数据(X)在归一化后出现 NaN/inf已自动替换为0。")
X_scaled = np.nan_to_num(X_scaled)
if np.isnan(y_scaled).any() or np.isinf(y_scaled).any():
print("⚠️ 警告: 目标数据(y)在归一化后出现 NaN/inf已自动替换为0。")
y_scaled = np.nan_to_num(y_scaled)
# 创建时间序列数据
X, y = create_dataset(X_scaled, y_scaled, sequence_length, forecast_horizon)
# 划分训练集和验证集80% 训练20% 验证)
# 注意:对于时间序列,通常不应该随机打乱。
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=False)
return X, y, X_train, X_val, y_train, y_val, scaler_X, scaler_y
def prepare_sequences(X, y, batch_size=32):
"""
将数据转换为DataLoader对象用于批量训练
参数:
X: 输入特征
y: 目标变量
batch_size: 批次大小
返回:
DataLoader对象
"""
# 转换为PyTorch张量
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.float32)
# 创建数据集
dataset = PharmacyDataset(X_tensor, y_tensor)
# 创建数据加载器
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
return data_loader
def prepare_tabular_data(training_df, feature_list, target_column, test_size=0.2):
"""
为表格模型如XGBoost准备训练和验证数据
参数:
training_df: 包含所有数据的DataFrame
feature_list: 用于训练的特征列名列表
target_column: 目标变量的列名
test_size: 验证集所占的比例
返回:
X_train, X_val, y_train, y_val: 训练和验证数据
scaler_X, scaler_y: 特征和目标的归一化器
"""
# 确保所有特征列都是数值类型
numeric_features = training_df[feature_list].select_dtypes(include=np.number).columns.tolist()
if not numeric_features:
raise ValueError("在提供的feature_list中没有找到任何数值类型的特征。")
# 预处理数据
X_raw = training_df[numeric_features].values
y_raw = training_df[[target_column]].values
# 归一化数据
scaler_X = MinMaxScaler(feature_range=(0, 1))
scaler_y = MinMaxScaler(feature_range=(0, 1))
X_scaled = scaler_X.fit_transform(X_raw)
y_scaled = scaler_y.fit_transform(y_raw).flatten() # XGBoost 期望 1D 目标
# 检查并修复归一化后可能出现的NaN或inf
if np.isnan(X_scaled).any() or np.isinf(X_scaled).any():
print("⚠️ 警告: 特征数据(X)在归一化后出现 NaN/inf已自动替换为0。")
X_scaled = np.nan_to_num(X_scaled)
if np.isnan(y_scaled).any() or np.isinf(y_scaled).any():
print("⚠️ 警告: 目标数据(y)在归一化后出现 NaN/inf已自动替换为0。")
y_scaled = np.nan_to_num(y_scaled)
# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(
X_scaled, y_scaled, test_size=test_size, random_state=42, shuffle=False
)
return X_train, X_val, y_train, y_val, scaler_X, scaler_y