ShopTRAINING/server/core/predictor.py

285 lines
10 KiB
Python
Raw Normal View History

"""
药店销售预测系统 - 核心预测器类
"""
import os
import pandas as pd
import numpy as np
import torch
import time
import matplotlib.pyplot as plt
from datetime import datetime
from trainers import (
train_product_model_with_mlstm,
train_product_model_with_kan,
train_product_model_with_tcn,
train_product_model_with_transformer
)
from predictors.model_predictor import load_model_and_predict
from utils.data_utils import prepare_data, prepare_sequences
from analysis.metrics import evaluate_model
from core.config import DEVICE, DEFAULT_MODEL_DIR, DEFAULT_DATA_PATH
class PharmacyPredictor:
"""
药店销售预测系统核心类用于训练模型和进行预测
"""
def __init__(self, data_path=DEFAULT_DATA_PATH, model_dir=DEFAULT_MODEL_DIR):
"""
初始化预测器
参数:
data_path: 数据文件路径
model_dir: 模型保存目录
"""
self.data_path = data_path
self.model_dir = model_dir
self.device = DEVICE
if not os.path.exists(model_dir):
os.makedirs(model_dir)
print(f"使用设备: {self.device}")
if os.path.exists(data_path):
self.data = pd.read_excel(data_path)
print(f"已加载数据,来源: {data_path}")
else:
print(f"数据文件 {data_path} 不存在,请先生成数据")
self.data = None
def train_model(self, product_id, model_type='transformer', epochs=100, batch_size=32,
learning_rate=0.001, sequence_length=30, forecast_horizon=7,
hidden_size=64, num_layers=2, dropout=0.1, use_optimized=False):
"""
训练预测模型
参数:
product_id: 产品ID
model_type: 模型类型 ('transformer', 'mlstm', 'kan', 'tcn', 'optimized_kan')
epochs: 训练轮次
batch_size: 批次大小
learning_rate: 学习率
sequence_length: 输入序列长度
forecast_horizon: 预测天数
hidden_size: 隐藏层大小
num_layers: 层数
dropout: Dropout比例
use_optimized: 是否使用优化版KAN仅当model_type为'kan'时有效
返回:
metrics: 模型评估指标
"""
if self.data is None:
print("没有可用的数据,请先加载或生成数据")
return None
product_data = self.data[self.data['product_id'] == product_id].copy()
if product_data.empty:
print(f"找不到产品 {product_id} 的数据")
return None
if model_type == 'transformer':
_, metrics = train_product_model_with_transformer(product_id, epochs=epochs, model_dir=self.model_dir)
elif model_type == 'mlstm':
_, metrics = train_product_model_with_mlstm(product_id, epochs=epochs, model_dir=self.model_dir)
elif model_type == 'kan':
_, metrics = train_product_model_with_kan(product_id, epochs=epochs, use_optimized=use_optimized, model_dir=self.model_dir)
elif model_type == 'optimized_kan':
_, metrics = train_product_model_with_kan(product_id, epochs=epochs, use_optimized=True, model_dir=self.model_dir)
elif model_type == 'tcn':
_, metrics = train_product_model_with_tcn(product_id, epochs=epochs, model_dir=self.model_dir)
else:
print(f"不支持的模型类型: {model_type}")
return None
return metrics
def predict(self, product_id, model_type, future_days=7, start_date=None, analyze_result=False):
"""
使用已训练的模型进行预测
参数:
product_id: 产品ID
model_type: 模型类型
future_days: 预测未来天数
start_date: 预测起始日期
analyze_result: 是否分析预测结果
返回:
预测结果和分析如果analyze_result为True
"""
return load_model_and_predict(
product_id,
model_type,
future_days=future_days,
start_date=start_date,
analyze_result=analyze_result
)
def train_optimized_kan_model(self, product_id, epochs=100, batch_size=32,
learning_rate=0.001, sequence_length=30, forecast_horizon=7,
hidden_size=64, num_layers=2, dropout=0.1):
"""
训练优化版KAN模型便捷方法
参数与train_model相同但固定model_type为'kan'且use_optimized为True
"""
return self.train_model(
product_id=product_id,
model_type='kan',
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
sequence_length=sequence_length,
forecast_horizon=forecast_horizon,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
use_optimized=True
)
def compare_kan_models(self, product_id, epochs=100, batch_size=32,
learning_rate=0.001, sequence_length=30, forecast_horizon=7,
hidden_size=64, num_layers=2, dropout=0.1):
"""
比较原始KAN和优化版KAN模型性能
参数与train_model相同
返回:
比较结果字典
"""
print(f"开始比较产品 {product_id} 的原始KAN和优化版KAN模型性能...")
# 训练原始KAN模型
print("\n训练原始KAN模型...")
kan_metrics = self.train_model(
product_id=product_id,
model_type='kan',
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
sequence_length=sequence_length,
forecast_horizon=forecast_horizon,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
use_optimized=False
)
# 训练优化版KAN模型
print("\n训练优化版KAN模型...")
optimized_kan_metrics = self.train_model(
product_id=product_id,
model_type='kan',
epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
sequence_length=sequence_length,
forecast_horizon=forecast_horizon,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
use_optimized=True
)
# 比较结果
comparison = {
'kan': kan_metrics,
'optimized_kan': optimized_kan_metrics
}
# 打印比较结果
print("\n模型性能比较:")
print(f"{'指标':<10} {'原始KAN':<15} {'优化版KAN':<15} {'改进百分比':<15}")
print("-" * 55)
for metric in ['mse', 'rmse', 'mae', 'mape']:
if metric in kan_metrics and metric in optimized_kan_metrics:
kan_value = kan_metrics[metric]
opt_value = optimized_kan_metrics[metric]
improvement = (kan_value - opt_value) / kan_value * 100 if kan_value != 0 else 0
print(f"{metric.upper():<10} {kan_value:<15.4f} {opt_value:<15.4f} {improvement:<15.2f}%")
# R²值越高越好所以计算改进的方式不同
if 'r2' in kan_metrics and 'r2' in optimized_kan_metrics:
kan_r2 = kan_metrics['r2']
opt_r2 = optimized_kan_metrics['r2']
improvement = (opt_r2 - kan_r2) / (1 - kan_r2) * 100 if kan_r2 != 1 else 0
print(f"{'':<10} {kan_r2:<15.4f} {opt_r2:<15.4f} {improvement:<15.2f}%")
# 训练时间
if 'training_time' in kan_metrics and 'training_time' in optimized_kan_metrics:
kan_time = kan_metrics['training_time']
opt_time = optimized_kan_metrics['training_time']
time_diff = (opt_time - kan_time) / kan_time * 100 if kan_time != 0 else 0
print(f"{'时间(秒)':<10} {kan_time:<15.2f} {opt_time:<15.2f} {time_diff:<15.2f}%")
return comparison
def list_available_models(self, product_id=None):
"""
列出可用的已训练模型
参数:
product_id: 产品ID如果为None则列出所有模型
返回:
可用模型列表
"""
if not os.path.exists(self.model_dir):
print(f"模型目录 {self.model_dir} 不存在")
return []
model_files = os.listdir(self.model_dir)
if product_id:
model_files = [f for f in model_files if f"product_{product_id}" in f]
models = []
for file in model_files:
if file.endswith('.pth'):
# 处理不同的模型文件命名格式
if "kan_optimized_model" in file:
model_type = "optimized_kan"
product_id = file.split('_product_')[1].split('.pth')[0]
elif "_optimized_model" in file:
model_type = "optimized_kan"
product_id = file.split('_product_')[1].split('.pth')[0]
else:
model_type = file.split('_model_product_')[0]
product_id = file.split('_product_')[1].split('.pth')[0]
models.append({
'model_type': model_type,
'product_id': product_id,
'file_name': file,
'file_path': os.path.join(self.model_dir, file)
})
return models
def delete_model(self, product_id, model_type):
"""
删除已训练的模型
参数:
product_id: 产品ID
model_type: 模型类型
返回:
是否成功删除
"""
model_suffix = '_optimized' if model_type == 'optimized_kan' else ''
model_name = f"{model_type}{model_suffix}_model_product_{product_id}.pth"
model_path = os.path.join(self.model_dir, model_name)
if os.path.exists(model_path):
os.remove(model_path)
print(f"已删除模型: {model_path}")
return True
else:
print(f"模型文件 {model_path} 不存在")
return False