ShopTRAINING/docs/模型类型/multi_model_strategy.md

262 lines
8.0 KiB
Markdown
Raw Permalink Normal View History

# 🔄 多模型互补策略在药店销售预测中的应用指南
## 📋 多模型互补的价值
在药店销售预测系统中Transformer、mLSTM和KAN模型各有所长。通过多模型互补策略我们可以
- 💪 **扬长避短**:利用每个模型的优势,弥补各自的不足
- 🎯 **提高准确性**:不同角度的预测结合,获得更全面的结果
- 📉 **降低风险**:减少单一模型可能带来的预测偏差
- 🔍 **增强鲁棒性**:提高对异常数据和市场变化的适应能力
## 🚀 实施多模型互补的步骤
### 1⃣ 数据准备与特征工程
```python
# 示例代码
from models.data_utils import prepare_pharmacy_data
# 准备训练数据
X_train, y_train, X_val, y_val, scaler = prepare_pharmacy_data(
product_id="P001",
lookback_days=30, # 历史观察窗口
forecast_days=7, # 预测未来7天
include_features=["price", "promotion", "weekday", "holiday", "temperature"]
)
```
- 确保所有模型使用相同的数据预处理流程
- 针对不同模型的特点,可以适当调整特征组合
### 2⃣ 各模型独立训练
```python
# 示例代码
from models.transformer_model import TimeSeriesTransformer
from models.mlstm_model import MatrixLSTMModel
from models.kan_model import KANModel
# 训练Transformer模型
transformer = TimeSeriesTransformer(
input_dim=X_train.shape[2],
d_model=64,
nhead=4,
num_layers=3
)
transformer.train(X_train, y_train, X_val, y_val, epochs=100, batch_size=32)
# 训练mLSTM模型
mlstm = MatrixLSTMModel(
input_dim=X_train.shape[2],
hidden_dim=64,
matrix_dim=8,
num_layers=2
)
mlstm.train(X_train, y_train, X_val, y_val, epochs=100, batch_size=32)
# 训练KAN模型
kan = KANModel(
input_dim=X_train.shape[2],
grid_size=10,
layers=[64, 32]
)
kan.train(X_train, y_train, X_val, y_val, epochs=100, batch_size=32)
```
- 根据药品特性选择适当的模型参数
- 对每个模型进行独立的超参数调优
### 3⃣ 模型评估与选择
```python
# 示例代码
from models.utils import evaluate_model
# 评估各模型性能
transformer_metrics = evaluate_model(transformer, X_val, y_val)
mlstm_metrics = evaluate_model(mlstm, X_val, y_val)
kan_metrics = evaluate_model(kan, X_val, y_val)
print("Transformer性能:", transformer_metrics)
print("mLSTM性能:", mlstm_metrics)
print("KAN性能:", kan_metrics)
```
- 使用多种评估指标MSE、RMSE、MAE、R²、MAPE
- 分析各模型在不同类型药品上的表现优势
### 4⃣ 多模型集成策略
#### 方案一:加权平均集成
```python
# 示例代码
def weighted_ensemble_predict(models, weights, X_test):
predictions = []
for model, weight in zip(models, weights):
pred = model.predict(X_test)
predictions.append(pred * weight)
return sum(predictions)
# 根据验证集性能确定权重
total_r2 = transformer_metrics['r2'] + mlstm_metrics['r2'] + kan_metrics['r2']
weights = [
transformer_metrics['r2'] / total_r2,
mlstm_metrics['r2'] / total_r2,
kan_metrics['r2'] / total_r2
]
# 加权预测
ensemble_pred = weighted_ensemble_predict(
[transformer, mlstm, kan],
weights,
X_test
)
```
#### 方案二:特定场景选择
```python
# 示例代码
def scenario_based_predict(product_id, X_test, transformer, mlstm, kan):
# 分析产品特性
product_info = get_product_info(product_id)
if product_info['seasonality'] == 'high':
# 季节性强的药品优先使用Transformer
return transformer.predict(X_test)
elif product_info['volatility'] == 'high':
# 波动性大的药品优先使用KAN
return kan.predict(X_test)
elif product_info['trend_dependency'] == 'high':
# 趋势依赖性强的药品优先使用mLSTM
return mlstm.predict(X_test)
else:
# 默认使用加权集成
return weighted_ensemble_predict([transformer, mlstm, kan], [0.4, 0.3, 0.3], X_test)
```
#### 方案三Stacking集成
```python
# 示例代码
from sklearn.linear_model import Ridge
def train_stacking_model(base_models, X_train, y_train, X_val, y_val):
# 生成基础模型在验证集上的预测
base_predictions = []
for model in base_models:
model.train(X_train, y_train, X_val, y_val)
pred = model.predict(X_val)
base_predictions.append(pred)
# 将基础预测作为新特征
stacking_features = np.column_stack(base_predictions)
# 训练元模型
meta_model = Ridge(alpha=1.0)
meta_model.fit(stacking_features, y_val)
return meta_model
# 训练stacking模型
meta_model = train_stacking_model([transformer, mlstm, kan], X_train, y_train, X_val, y_val)
# 预测
def stacking_predict(base_models, meta_model, X_test):
base_predictions = []
for model in base_models:
pred = model.predict(X_test)
base_predictions.append(pred)
stacking_features = np.column_stack(base_predictions)
final_prediction = meta_model.predict(stacking_features)
return final_prediction
```
### 5⃣ 动态模型选择与调整
```python
# 示例代码
def dynamic_model_selection(product_id, recent_data, all_models):
"""根据最近数据表现动态选择最佳模型"""
best_model = None
best_score = float('inf')
for model in all_models:
# 在最近数据上评估模型
score = evaluate_on_recent_data(model, recent_data)
if score < best_score:
best_score = score
best_model = model
return best_model
# 每周更新最佳模型
def weekly_model_update(product_ids):
for product_id in product_ids:
# 获取最近数据
recent_data = get_recent_data(product_id, days=14)
# 动态选择模型
best_model = dynamic_model_selection(
product_id,
recent_data,
[transformer, mlstm, kan]
)
# 更新模型权重或选择
update_model_selection(product_id, best_model)
```
## 📊 不同药品类型的最佳模型组合策略
| 药品类型 | 主要特点 | 推荐模型组合 | 权重分配 |
|---------|---------|------------|---------|
| 慢性病药物 | 稳定、长期依赖 | mLSTM + Transformer | 0.6 + 0.4 |
| 季节性药物 | 周期性强、受季节影响 | Transformer + KAN | 0.7 + 0.3 |
| 促销敏感药物 | 价格弹性大 | KAN + mLSTM | 0.6 + 0.4 |
| 新上市药品 | 数据少、趋势不明 | KAN + Transformer | 0.7 + 0.3 |
| 多因素影响药品 | 复杂、多变量 | 三模型均衡 | 0.4 + 0.3 + 0.3 |
## 💡 实用技巧与最佳实践
1. **分阶段预测**短期用Transformer中期用mLSTM长期用KAN然后加权融合
2. **特征分配**
- Transformer处理时间相关特征周期性、节假日
- mLSTM处理趋势和序列相关特征
- KAN处理非线性特征价格、促销、天气
3. **自动化流程**
```python
# 示例代码
def auto_train_predict_pipeline(product_id):
# 准备数据
data = prepare_data(product_id)
# 训练所有模型
models = train_all_models(data)
# 评估并选择最佳策略
best_strategy = select_best_strategy(models, data)
# 执行预测
predictions = execute_prediction_strategy(best_strategy, data)
# 保存结果和模型
save_results(product_id, predictions, models, best_strategy)
return predictions
```
4. **定期重训练**:每月或每季度重新训练模型,保持预测准确性
5. **异常检测与处理**使用KAN模型检测异常销售模式并调整预测策略
## 🌟 总结
多模型互补策略是药店销售预测系统的核心优势通过合理组合Transformer、mLSTM和KAN模型可以显著提高预测准确性和鲁棒性。根据不同药品特性选择合适的模型组合和集成方法并建立自动化的训练-评估-预测流程,能够为药店管理者提供更可靠的销售预测,支持更精准的库存管理和销售决策。