/** * Copyright (c) Microsoft Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import OpenAI from 'openai'; import type { LLMDelegate, LLMConversation, LLMToolCall, LLMTool } from './loop.js'; import type { Tool } from '@modelcontextprotocol/sdk/types.js'; const model = 'gpt-4.1'; export class OpenAIDelegate implements LLMDelegate { private openai = new OpenAI(); createConversation(task: string, tools: Tool[]): LLMConversation { const genericTools: LLMTool[] = tools.map(tool => ({ name: tool.name, description: tool.description || '', inputSchema: tool.inputSchema, })); // Add the "done" tool genericTools.push({ name: 'done', description: 'Call this tool when the task is complete.', inputSchema: { type: 'object', properties: { result: { type: 'string', description: 'The result of the task.' }, }, required: ['result'], }, }); return { messages: [{ role: 'user', content: `Peform following task: ${task}. Once the task is complete, call the "done" tool.` }], tools: genericTools, }; } async makeApiCall(conversation: LLMConversation): Promise { // Convert generic messages to OpenAI format const openaiMessages: OpenAI.Chat.Completions.ChatCompletionMessageParam[] = []; for (const message of conversation.messages) { if (message.role === 'user') { openaiMessages.push({ role: 'user', content: message.content }); } else if (message.role === 'assistant') { const toolCalls: OpenAI.Chat.Completions.ChatCompletionMessageToolCall[] = []; if (message.toolCalls) { for (const toolCall of message.toolCalls) { toolCalls.push({ id: toolCall.id, type: 'function', function: { name: toolCall.name, arguments: JSON.stringify(toolCall.arguments) } }); } } const assistantMessage: OpenAI.Chat.Completions.ChatCompletionAssistantMessageParam = { role: 'assistant' }; if (message.content) assistantMessage.content = message.content; if (toolCalls.length > 0) assistantMessage.tool_calls = toolCalls; openaiMessages.push(assistantMessage); } else if (message.role === 'tool') { openaiMessages.push({ role: 'tool', tool_call_id: message.toolCallId, content: message.content, }); } } // Convert generic tools to OpenAI format const openaiTools: OpenAI.Chat.Completions.ChatCompletionTool[] = conversation.tools.map(tool => ({ type: 'function', function: { name: tool.name, description: tool.description, parameters: tool.inputSchema, }, })); const response = await this.openai.chat.completions.create({ model, messages: openaiMessages, tools: openaiTools, tool_choice: 'auto' }); const message = response.choices[0].message; // Extract tool calls and add assistant message to generic conversation const toolCalls = message.tool_calls || []; const genericToolCalls: LLMToolCall[] = toolCalls.map(toolCall => { const functionCall = toolCall.function; return { name: functionCall.name, arguments: JSON.parse(functionCall.arguments), id: toolCall.id, }; }); // Add assistant message to generic conversation conversation.messages.push({ role: 'assistant', content: message.content || '', toolCalls: genericToolCalls.length > 0 ? genericToolCalls : undefined }); return genericToolCalls; } addToolResults( conversation: LLMConversation, results: Array<{ toolCallId: string; content: string; isError?: boolean }> ): void { for (const result of results) { conversation.messages.push({ role: 'tool', toolCallId: result.toolCallId, content: result.content, isError: result.isError, }); } } checkDoneToolCall(toolCall: LLMToolCall): string | null { if (toolCall.name === 'done') return toolCall.arguments.result; return null; } }