📝 更新說明文檔

This commit is contained in:
Minidoracat 2025-06-05 07:45:08 +08:00
parent bfdc6bafd2
commit eb77bf918b
3 changed files with 6 additions and 6 deletions

View File

@ -8,9 +8,9 @@
## 🎯 Core Concept
This is an [MCP server](https://modelcontextprotocol.io/) that implements **human-in-the-loop** workflows in AI-assisted development tools. By guiding AI to confirm with users rather than making speculative operations, it can consolidate up to 25 tool calls into a single feedback-oriented request, dramatically reducing platform costs.
This is an [MCP server](https://modelcontextprotocol.io/) that establishes **feedback-oriented development workflows**, perfectly adapting to both local and **SSH remote development environments**. By guiding AI to confirm with users rather than making speculative operations, it can consolidate multiple tool calls into a single feedback-oriented request, dramatically reducing platform costs and improving development efficiency.
**Supported Platforms:** [Cursor](https://www.cursor.com) | [Cline](https://cline.bot) | [Windsurf](https://windsurf.com)
**Supported Platforms:** [Cursor](https://www.cursor.com) | [Cline](https://cline.bot) | [Windsurf](https://windsurf.com) | [Augment](https://www.augmentcode.com) | [Trae](https://www.trae.ai)
### 🔄 Workflow
1. **AI Call**`mcp-feedback-enhanced`

View File

@ -8,9 +8,9 @@
## 🎯 核心概念
这是一个 [MCP 服务器](https://modelcontextprotocol.io/)在 AI 辅助开发工具中实现**人在回路human-in-the-loop**的工作流程。通过引导 AI 与用户确认而非进行推测性操作,可将多达 25 次工具调用合并为单次反馈导向请求,大幅节省平台成本。
这是一个 [MCP 服务器](https://modelcontextprotocol.io/)建立**反馈导向的开发工作流程**,完美适配本地与 **SSH 远程开发环境**。通过引导 AI 与用户确认而非进行推测性操作,可将多次工具调用合并为单次反馈导向请求,大幅节省平台成本并提升开发效率
**支持平台:** [Cursor](https://www.cursor.com) | [Cline](https://cline.bot) | [Windsurf](https://windsurf.com)
**支持平台:** [Cursor](https://www.cursor.com) | [Cline](https://cline.bot) | [Windsurf](https://windsurf.com) | [Augment](https://www.augmentcode.com) | [Trae](https://www.trae.ai)
### 🔄 工作流程
1. **AI 调用**`mcp-feedback-enhanced`

View File

@ -8,9 +8,9 @@
## 🎯 核心概念
這是一個 [MCP 伺服器](https://modelcontextprotocol.io/)在 AI 輔助開發工具中實現**人在回路human-in-the-loop**的工作流程。透過引導 AI 與用戶確認而非進行推測性操作,可將多達 25 次工具調用合併為單次回饋導向請求,大幅節省平台成本。
這是一個 [MCP 伺服器](https://modelcontextprotocol.io/)建立**回饋導向的開發工作流程**,完美適配本地與 **SSH 遠端開發環境**。透過引導 AI 與用戶確認而非進行推測性操作,可將多次工具調用合併為單次回饋導向請求,大幅節省平台成本並提升開發效率
**支援平台:** [Cursor](https://www.cursor.com) | [Cline](https://cline.bot) | [Windsurf](https://windsurf.com)
**支援平台:** [Cursor](https://www.cursor.com) | [Cline](https://cline.bot) | [Windsurf](https://windsurf.com) | [Augment](https://www.augmentcode.com) | [Trae](https://www.trae.ai)
### 🔄 工作流程
1. **AI 調用**`mcp-feedback-enhanced`